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Abstract

Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling

pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However,

data from experimental and animal studies strongly support that dysregulated redox signaling,

resulting from hyper-activation of various cellular oxidases or mitochondrial dysfunction, is

integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we

address how redox signaling modulates the protein function, the various sources of increased

oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in

the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and

ischemia–reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS

production in specific cell types and subcellular organelles combined with the development of

nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may

enable fine-tuning of redox signaling for the treatment and prevention of CVD.
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Introduction

Reactive oxygen species (ROS)1 are formed from incomplete reduction of oxygen during

normal respiration in all aerobic organisms. ROS are highly reactive and include free

radicals containing one or more unpaired electrons, such as superoxide (O2
•−) and hydroxyl

radical (•OH), and nonradicals such as hydrogen peroxide (H2O2). It is estimated that

between 0.2 and 2.0% of molecular oxygen consumed by the mitochondria in vitro may be

converted to O2
•− by the electron transport chain, but the amount of O2

•− produced in vivo

may be far less [1,2]. In addition to mitochondrial respiration, O2
•− is generated by NADPH

oxidases (Nox’s), uncoupled nitric oxide synthase, xanthine oxidase, lipoxygenases,

myeloperoxidase, and cytochrome P450 isozymes. Because ROS production is inherent to

normal physiology, cells have evolved both enzymatic and nonenzymatic antioxidant

defense mechanisms to scavenge ROS and to maintain redox balance. A shift in redox
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homeostasis to an imbalance between ROS generation and endogenous antioxidant

mechanisms results in oxidative stress, which has been implicated in the pathogenesis of

various diseases including those of the cardiovascular system.

Reactive oxygen species in the cardiovascular system

A vast array of data from cell culture studies and experimental animal models as well as

human studies supports the role of oxidative stress in the development of cardiovascular

diseases such as atherosclerosis, hypertension, cardiac hypertrophy, heart failure, and

ischemia-reperfusion injury [3–12]. Upregulation of oxidative stress markers has been

shown to predict cardiovascular diseases [13–16]. However, data from a majority of

randomized clinical trials and meta-analysis studies failed to show any preventive effect of

antioxidant vitamins on the pathogenesis of cardiovascular diseases or mortality [17–20].

The ineffectiveness of antioxidants highlights the complexity of redox reactions in

biological systems including vascular cells and the limitations of our current approaches to

modulating the redox signaling to effect positive outcomes against cardiovascular diseases.

Oxidative stress causes cellular damage by free radical-induced oxidation of lipids, proteins,

and DNA Molecular oxygen, itself a radical, is sparingly reactive, as its two unpaired

electrons are in different molecular orbitals and have parallel spins. One-electron reduction

of oxygen produces O2
•−, which is membrane-impermeative and has a short half-life in an

aqueous environment. Superoxide is rapidly dismutated to H2O2 by the action of superoxide

dismutase (SOD) enzymes. As H2O2 is more stable than O2
•− and membrane-permeative, it

is important in cellular redox homeostasis and signaling. Reaction of H2O2 with transition

metal ions such as Fe2+ generates •OH, a highly reactive and damaging ROS (Fenton

reaction). Catalase, glutathione peroxidase, and per-oxiredoxins reduce H2O2 to water.

Nitric oxide (•NO) is another important ROS in the cardiovascular system generated by the

endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) enzymes. When both

are produced in the cells, O2
•− reacts with •NO at a much faster rate than with SOD,

generating peroxynitrite (ONOO−), a potent oxidizing radical in vascular cells.

Myeloperoxidase secreted by neutrophils and monocytes can amplify the oxidative potential

of H2O2 at physiological chloride concentrations by generating hypochlorous acid (HOCl),

which is a strong oxidant that causes chlorination of tyrosine and oxidation of lysine,

cysteine, and methionine (discussed later) [21–24].

Redox signaling

The term “redox signaling” describes a process in which physiological levels of ROS/

reactive nitrogen species (RNS) induce modifications to proteins that are discrete, site-

specific, and reversible [25]. Data accumulated over the past 2 decades provide evidence

that ROS modulate the activity of a vast array of intracellular proteins and signaling

pathways and this redox signaling is spatially and temporally regulated to generate specific

effects. Even in the case of phagocytosis, wherein the microbicidal action has hitherto been

attributed to the direct action of ROS generated by the concerted action of NADPH oxidase

and myeloperoxidase, it is now revealed that the destruction of the invading pathogen is

achieved by stimulation of cellular signaling pathways involved in the activation of
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proteases consequent to the ROS-induced increase in anionic charge and its compensation

by the surge of K+ ions [26].

The reversible modification of the sulfur-containing amino acids methionine and cysteine

serves as a posttranslational mechanism for the regulation of protein functions. ROS-

induced oxidation of the sulfur atom in methionine yields methionine sulfoxide, which can

be reduced back to methionine by methionine sulfoxide reductase (Msr) in a thioredoxin-

dependent reaction. Methionine oxidation together with tyrosine chlorination of

apolipoprotein A-1 (apoA-1) caused by ROS impairs the ABCA1 (ATP-binding cassette

transporter A1)-dependent cholesterol efflux activity of apoA-1, which might enhance foam

cell formation and atherogenesis [27]. Methionine oxidation is completely reversed by Msr,

suggesting that in vivo modulation of this enzyme might prevent the loss of ABCA1 activity

of apoA-1 under oxidative stress conditions and attenuate atherosclerosis. Angiotensin II

(AngII)-induced oxidation of methionine 281/282 activates CaMKII (calcium/calmodulin-

dependent protein kinase II), causing myocardial apoptosis in vitro and in vivo [28]. Further

supporting the regulatory role of methionine oxidation in cardiac remodeling, AngII-

stimulated CaMKII oxidation, cardiomyocyte apoptosis, and cardiac dysfunction are

enhanced in MsrA−/− mice. In addition to increased oxidative stress, MsrA−/− mice have a

decreased life span [29].

The main mechanisms by which ROS generate specific cellular effects, however, are the

posttranslational covalent modification of cysteine thiols within the active and allosteric

sites of proteins, oxidation of iron-sulfur cluster-containing proteins, S-glutathi-onylation

(disulfide link between protein thiol and glutathione), and S-nitrosylation/S-nitrosation (•NO

reacts with a thiol radical or nitrosonium ion reacts with protein thiolate to form protein-S-

nitrosothiols) [30,31]. Redox signaling can induce acute effects, such as when the target

proteins are ion channels and contractile proteins, or long-term effects, when the target is a

protein kinase or a redox-sensitive transcription factor [30].

Modulation of protein function via alteration of cysteine thiols by H2O2 influences a wide

variety of signal transduction cascades and diverse biological processes. H2O2, at low-

micromolar concentrations, oxidizes catalytic cysteine residues in proteins first to generate

sulfenic acid (SOH) and then disulfides (SS) [32,33]. SS formation can occur between two

adjacent cysteines (intrapro-tein), between two proteins (interprotein), or as a mixed

disulfide formed between a protein thiol and glutathione (S-glutathionyla-tion). Protein

thiols and disulfides can undergo further oxidation by H2O2 to generate sulfinic (SO2
−) and

sulfonic (SO3
−) acids. In addition, cysteine thiols can undergo •NO-dependent electrophilic

and oxidative modification (S-nitrosylation) to generate protein-S-nitrosothiol (SNO), which

with further oxidation can form SOH, SS, SO2
−, and SO3

− [34]. Oxidized or nitrosylated

cysteine thiols in the cells are reduced back to cysteine by several enzymatic and

nonenzymatic systems. For example, sulfenic acids, protein disulfides, and protein-S-

nitrosothiols are reduced by thioredoxin, and thioredoxin reductase and S-glutathionylated

protein cysteines by glutaredoxin [34,35]. Cysteine sulfinic acids, formed by the

hyperoxidation of active-site Cys residues in typical 2-Cys peroxiredoxins, can be reduced

by the enzyme sulfiredoxin. However, they might be irreversibly oxidized to cause damage

to most proteins [36–38]. Sulfonic acids are an example of irreversible protein modification
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and a marker of cumulative oxidative stress [39]. Theoretically, the posttranslational

modifications of cysteines could be impeded by antioxidant enzymes as they can remove

ROS before protein modification occurs. Peroxiredoxins, by virtue of their ubiquitous

presence, abundance, and high rate constants, reduce H2O2 and other hydroperoxides far

more efficiently than any other thiol-containing proteins, impeding cysteine modifications

[40]. The cysteine sulfinic acid generated in this reaction in the case of glutathione-

dependent peroxiredoxins rapidly forms disulfide with glutathione, which is then recycled to

the reduced state by glutaredoxin or ascorbic acid. In thioredoxin-dependent peroxiredoxins,

the sulfenic acid rapidly reacts with proximal thiols to form a homo-intermolecular disulfide,

which is recycled to the reduced state by thioredoxin [41–44]. The progression from

reversible S-nitrosylation to SOH, SS, SO2
−, and irreversible SO3

− represents a graded

transition of cellular signaling from adaptation and maintenance of cellular redox state in the

face of nitrosative and oxidative stress to toxicity [34].

•NO also modulates protein function by targeting cysteine thiols in peptides and proteins,

and S-nitrosylation is a principal mechanism by which •NO regulates signaling cascades

across a multitude of protein classes [34]. The basis for S-nitrosylation specificity is not in

the primary sequence of the target proteins, as high-throughput proteomic approaches failed

to identify a linear Cys-flanking motif that predicts stable trans-nitrosylation of cysteines

across various protein classes [45]. The proximity of a protein Cys to NOS may be a

determinant of S-nitrosylation [46,47], whereas the electrostatic environment,

hydrophobicity, and contiguity and orientation of aromatic amino acid chains arising from

the tertiary protein structure and protein-protein interactions also regulate S-nitrosylation

and denitrosylation [34,48]. Redox modification of active-site thiols is a principal

mechanism for dynamic posttranslational regulation of all major protein classes, including

phosphatases, kinases, transcription factors, ion channels and transporters, cytoskeletal and

structural proteins, GTPases, metabolic and antioxidant enzymes, and respiratory proteins

[31,34].

Phosphatases

Protein tyrosine phosphorylation is a key regulatory mechanism in signal transduction,

affecting many cellular functions. Sundaresan et al. [49] demonstrated a correlation between

the magnitude and duration of an increase in H2O2 levels and the protein tyrosine

phosphorylation in VSMCs treated with various growth factors. They hypothesized that

increased protein tyrosine phosphorylation was due to the transient inactivation of PTPs.

Several subsequent papers provided the evidence for redox regulation of PTPs by growth

factor-induced ROS. Lee et al. [50] elucidated reversible inactivation of PTP1B in A431

cells treated with epidermal growth factor (EGF), and later PTP1B inactivation was

attributed to oxidation by H2O2, as inhibition of its accumulation prevented protein tyrosine

phosphorylation [51]. Reversible inactivation of Src-homology 2 domain-containing PTP

(SHP2) in VSMCs treated with platelet-derived growth factor (PDGF) requires association

with the PDGF receptor and is necessary for the receptor activation [52]. Treatment of

VSMCs with antioxidants increased growth factor-induced activity of SHP2 and several

other PTPs, further confirming their redox regulation [53,54]. It was demonstrated that rapid

inactivation of PTP family members by low-micromolar concentrations of H2O2 as a result
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of the oxidation of the essential catalytic cysteine residue to a Cys-SOH intermediate renders

the PTPs inactive against phosphorylated substrates [29]. Unlike most cysteines in cellular

proteins, which have a pKa > 8.0 at physiological pH, the catalytic cysteine residues of PTPs

have low pKa ( > 6.0) and are present in thiolate form at physiological pH, making them

extremely reactive [55,56]. The thiolate nucleophile attacks the electrophilic phosphorus

atom of the substrate, removing the phosphate group and forming an enzyme thiol-

phosphate intermediate [57]. However, because of their strong nucleophilic character, the

thiolate anions are susceptible to oxidation by H2O2.

The Cys-SOH intermediate formed during PTP1B oxidation is rapidly converted into a

sulfenyl-amide species by covalent linking of a sulfur atom of the catalytic cysteine with the

main chain nitrogen of an adjacent residue [58,59]. This results in large conformational

changes in the catalytic site, which inhibit substrate binding as well as protecting it from

irreversible oxidation to sulfonic acid and allowing redox regulation of the enzyme by

promoting its reversible reduction by thiols. Glutathionylation of the Cys-SOH also protects

PTP1B from irreversible oxidation [60]. Other PTPs are protected from irreversible

oxidation by the formation of a disulfide either between two vicinal cysteines in the catalytic

site, as reported for LMW-PTP [61,62], or between the catalytic cysteine and a nearby

backdoor cysteine, as observed in Cdc25 [63], RPTPα [64], and PTEN [65]. In the case of

the SHPs, rereduction of Cys-SOH is dependent on the formation of an intramolecular

disulfide between two conserved backdoor cysteines [66]. Meng et al. [54] demonstrated

that reversible oxidative inactivation of SHP2 is necessary for PDGF-induced mitogenic

signaling in fibroblasts. Induction of endogenous •NO and exposure to •NO donors inhibited

the activity of several cellular PTPs, including those in endothelial cells [67–69]. However,

S-nitrosylation of the catalytic cysteine in PTP1B protected it from ROS-induced

irreversible oxidation [70].

Protein kinases

In addition to indirect regulation resulting from the concomitant inhibition of PTPs, both

receptor (RTK) and nonreceptor tyrosine kinases also undergo oxidation-dependent

activation. Examples of RTKs that undergo direct oxidation include insulin, EGF and PDGF

receptors, and Ret kinase [71]. Schmid et al. [72] reported that increased kinase activity and

insulin responsiveness of the insulin receptor (IR) may require “redox priming” and results

from a decrease in IR β-chain sulfhydryl groups due to oxidation. In fact, 3-D models of the

IR showed that conversion of any of the four cysteine residues (1056, 1138, 1234, and 1245)

into sulfenic acid produces conformational changes, bringing Tyr1158 into close contact

with Asp1083, which renders the catalytic site at Asp1132 and Tyr1162 accessible and

facilitates its autophosphorylation in the activation loop [73].

Among the nonreceptor tyrosine kinases, Src is regulated by many stimuli that generate

ROS, including hypoxia/reoxygenation, stretch, integrins, growth factors, and vasoactive

agonists such as AngII and thrombin [74]. Hypoxia-induced mitochondrial ROS production

activates Src in VSMCs, resulting in increased hypoxia-inducible factor 1α (HIF1α)

expression [75]. Antioxidant-inhibitable Src activation was observed in endothelial cells

subjected to cyclic strain or H2O2 treatment [76]. Integrin-stimulated Src activation was
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biphasic, with an early activation phase driven mainly by Tyr527 dephosphorylation

mediated by PTPa and a subsequent Tyr418 autophosphorylation. The late phase involves

oxidation of Cys245 and Cys487 by H2O2, resulting in the hyper-phosphorylation of Tyr418

and further activation of the kinase [77]. Src is also activated in a Tyr527-independent

manner by nitrosylation and via generation of an intermolecular S-S bond, resulting in

aggregation of adjacent Src molecules and Tyr416 autophosphorylation [78].

Serine/threonine kinases, such as protein kinase C (PKC), undergo redox regulation by

direct oxidation of cysteine residues. All 12 PKC isozymes contain cysteine residues in the

regulatory as well as catalytic domains and the stimulation or inhibition of the enzyme

depends on which of the cysteines undergo redox modification [79,80]. Low levels of ROS

oxidize cysteine residues in the regulatory region, promoting the release of zinc and forming

intramolecular disulfide bonds, which causes Ca2+, diacylglycerol, or other lipid-

independent activation of PKC by the dissociation of autoinhibitory pseudo-substrate [79–

82]. In contrast, oxidation of catalytic domain cysteines inhibits PKC activity [80]. On the

other hand, high-glucose-induced activation of PKC increased ROS production and

cyclooxygenase 2 expression and reduced •NO availability and altered prostanoid

expression, causing endothelial dysfunction [83]. ROS-induced PKC activity also regulates

VCAM-1-dependent lymphocyte transendothelial migration [84]. Cyclic AMP-dependent

(PKA) and cyclic guanosine monophosphate (cGMP)-dependent (PKG) protein kinases are

also redox-sensitive and undergo cyclic nucleotide-independent activation by forming an

interprotein disulfide linking two subunits in cells on exposure to H2O2 [85,86]. PKG

activation represents one mechanism by which H2O2 can act as a vasorelaxant in the

cardiovascular system [76]. In addition, activities of protein kinases such as Akt [87] and

JNK1 [88] are regulated by S-nitrosylation of cysteine residues, resulting in their

inactivation. Independent of classic regulation by guanine nucleotide exchange factors and

GTPase-activating proteins, oxidizing agents also regulate the activity of GTPases. Lander

et al. [89] showed for the first time that S-nitrosylation of Cys118 enhanced the activity of

Ras by promoting the exchange of GDP for GTP. Adachi et al. [90] demonstrated that S-

glutathionylation of Cys118 regulates AngII-induced hypertrophic signaling in VSMCs.

More recently, Burridge’s group [91] showed that oxidation of Cys16 and Cys20 in the

phosphoryl binding group activates RhoA and induces stress fiber formation in fibroblasts

exposed to oxidants, suggesting that redox regulation of GTPases is a widespread signaling

mechanism.

Transcription factors

Redox regulation of transcription factors such as NF-κB, nuclear factor E2-related factor-2

(Nrf2), AP-1, p53, and HIF plays an important role in vascular homeostasis and

pathogenesis [31,92]. NF-κB regulates gene expression in immunity, stress responses, and

inflammation, including in endothelial cells and cardiac myocytes [93]. Inhibitors of NF-κB

(IκB) bind the inactive NF-κB p50–p65 heterodimer, the prototype of NF-κB family, and

sequester it in the cytoplasm under basal conditions. Under oxidative stress conditions,

activation of IκB via phosphorylation of Ser32 and Ser36 residues by inhibitory κB kinases

(IKKs) targets IκB for ubiquitination and proteasomal degradation, allowing NF-κB to

translocate to the nucleus and modulate gene expression [94,95]. Redox regulation of NF-
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κB is complex, as Cys62 of the p50 subunit is oxidized in the cytoplasm, and its reduction,

by thioredoxin or possibly by Ref-1, is essential for its DNA binding in the nucleus [96–98].

The IKK complex contains catalytic IKKa and IKKp sub-units and a noncatalytic IKKγ

subunit. The Cys178 and Cys179 in the kinase domains of the IKKα and IKKβ, respectively,

regulate enzyme activity by promoting phosphorylation of activation-loop serines and

interaction with ATP [99–101]. These cysteine residues also mediate redox regulation of

NF-κB activity, as direct binding of electrophilic compounds to them inhibits enzyme

activity and this inhibition was reversed by reducing agents. S-glutathionylation of Cys179

in the IKKβ also regulates reversible inhibition of NF-κB by endogenous H2O2 [102]. S-

nitrosylation of the Cys179 in IKKβ inhibits the enzyme activity and NF-κB stimulation, a

mechanism by which •NO exerts its anti-inflammatory efforts [103]. In addition, S-

nitrosylation of Cys62 in the p50 subunit inhibits NF-κB-dependent DNA binding, promoter

activity, and gene transcription [104,105].

The consensus DNA cis elements to which NF-κB dimers bind are known as “ κB sites” (5’-

GGGRNWYYCC-3’, where R is A or G, N is any nucleotide, W is A or T, and Y is C or T)

and are present in the promoter/enhancer regions of many target genes that regulate a

diverse array of functions, including inflammation, proliferation, angiogenesis, matrix

degradation, and pro- as well as antiapoptosis [93,106,107]. In cardiomyocytes, functional

NF-κB signaling pathways are essential for protection against apoptosis induced by

cytokines and acute myocardial ischemia [108,109]. However, chronic NF-κB activation

under pathophysiological settings such as heart failure exacerbates cardiac remodeling by

stimulating proinflammatory and profibrotic genes and inducing myocytes apoptosis [110].

The endothelial NF-κB signal transduction system is primed for activation in regions of

disturbed flow and its activity is increased by exposure to stimuli that enhance

atherosclerosis [111]. Further support for NF-κB in atherogenesis is evident from the reports

that its activation regulates cytokine-induced expression of the cellular adhesion molecules

vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1

(ICAM-1) in endothelial cells [112,113]. NF-κB is activated by H2O2 in endothelial cells

[114], whereas its activity is inhibited in H2O2-treated epithelial cells [92], which suggests

that redox regulation of NF-κB and its attendant effects on cellular outcomes are determined

by the duration and cellular context [31,93].

Nrf2 is another redox-sensitive transcription factor that helps maintain cellular redox

homeostasis by upregulating antioxidant and phase II detoxifying enzymes under oxidative

and electrophilic stress conditions [115]. The gene upregulation is achieved by the

interaction of Nrf2 with electrophile and antioxidant (ARE) response elements and the

upregulated genes include heme oxygenase-1 (HO-1), the catalytic subunit of glutamate-

cysteine ligase, glutathione S-transferase, and NAD(P)H:quinine oxidore-ductase 1. Nrf2

activation and induction of downstream antioxidant genes confers protection against

oxidative stress in cardiomyocytes and VSMCs and inhibits vascular inflammation

[116,117]. Activation of Nrf2-dependent antioxidant gene expression by advanced glycation

end products may protect the endothelium against chronic oxidative stress in diabetes [118].

Furthermore, atheroprotective laminar flow activates, whereas proatherogenic oscillatory

flow inhibits, Nrf2 activity in human endothelial cells, underlying the importance of Nrf2-
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regulated gene expression in vascular homeostasis [119,120]. Under redox conditions where

there may be a limited availability of tetrahy-drobiopterin (BH4), the eNOS cofactor, Nrf2

activation maintains endothelial homeostasis by downregulating eNOS levels via increased

HO-1 activity and thus maintaining stoichiometric balance between BH4 and eNOS [121].

Nrf2 is sequestered in the cytoplasm under basal conditions by a cysteine-rich protein,

Kelch-like ECH-associated protein 1 (Keap1), which binds to the Neh2 domain of Nrf2 and

targets it for ubiquitin-dependent proteasomal degradation [122,123]. Two cysteine residues

in Keap1, Cys273 and Cys288, are necessary for the ubiquitination of Nrf2. Electrophiles

and oxidants disrupt the Keap1–Nrf2 complex, perhaps by the oxidation of Cys273 and

Cys288, leading to stabilization and enhanced nuclear localization of Nrf2 and increased

transcription of ARE-containing genes [124]. Furthermore, Cys151 in Keap1 is required for

inhibition of Nrf2 degradation during oxidative stress, perhaps by inducing confor-mational

changes. Fourquet et al. [125] reported that intermole-cular disulfide formation between

Cys152 residues by ROS and RNS results in Keap1 inactivation and Nrf2 stabilization. The

same is observed with simultaneous inactivation of the thioredoxin and glutathione

pathways.

AP-1 regulates gene expression in cells in response to a broad spectrum of environmental

stimuli, including oxidative stress. It is a dimer consisting of members of the Jun and Fos

families, which complex through a leucine zipper domain into homo (Jun/Jun) or

heterodimers (Jun/Fos) [126,127]. Dimerization juxtaposes the conserved basic regions of

constituent proteins, forming a bipartite DNA-binding domain. Classic regulation of the

activity of AP-1, either by an increase in the transcription of the Fos and Jun genes or by

phosphorylation of the Fos and Jun proteins, often occurs downstream of redox-sensitive

protein kinase activation [128,129]. AP-1 activity is also regulated in a redox-sensitive

manner, as a conserved cysteine residue in the DNA-binding domains of the Fos and Jun

proteins is susceptible to oxidation resulting in the loss of DNA binding [130]. These data

are supported by the loss of redox regulation observed when the conserved cysteine is

substituted by a serine residue [131]. The c-Jun binding domain contains one cysteine

residue (Cys269) in the basic region that directly binds DNA and another (Cys320) close to

the leucine zipper domain [132]. A decrease in the ratio of reduced/oxidized glutathione

under oxidative stress conditions induces S-glutathiolation of Cys269 and the formation of

an intermolecular disulfide bridge between Cys320 residues, with the former enabling

reversible redox regulation of c-Jun DNA binding. In addition, reversible S-

nitrosoglutathione-dependent S-glutathiolation of Cys269 may regulate c-Jun DNA binding

[133]. We and others have demonstrated that AP-1 regulates vasoactive agonist-induced

expression of adhesion molecules such as CD44 in VSMCs in a redox-sensitive manner

[134,135]. In isolated hearts, an increase in AP-1 activity correlates with the duration of

ischemia and reperfusion, whereas in adapted myocardium AP-1 activity is at the basal

level, which indicates that AP-1 stimulates oxidative stress-induced apopto[136].

Several lines of evidence suggest that DNA binding or tran-scriptional activity of p53 is

highly prone sis to oxidative inactivation. For example, DNA binding of p53 to its cognate

sequence in vitro requires reductants such as 2-mercaptoethanol or dithiothreitol in the

binding buffers and is sensitive to H2O2 and other oxidants such as diamide [137]. In
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addition, pharmacological oxidizing and reducing agents modulate gene transactivation by

p53 in human cells [138]. More recently, Velu et al. [139] demonstrated that S-

glutathionylation, in addition to other posttranslational modifications such as site-specific

phosphorylation, ubiquitination, and 182 as the sites of sumoylation [140], governs the

activity of p53 under stress conditions. Whereas most of the posttranslational modifications

of p53 after genotoxic stress enhance its transcriptional competency to induce cell cycle

checkpoints, S-glutathionylation is a negative and defensive regulatory mechanism under

acute stress. Even though mass spectrometry identified cysteines 124, 141, and 182 as the

sites of glutathionylation, cysteine 141 is the most reactive one on the surface of the p53

[139]. In addition, molecular modeling studies showed cysteines 124 and 141 at the dimer

interface of p53, and glutathionylation of either residue interferes with protein dimerization

and inhibits p53-DNA association. Inhibition of DNA binding and disruption of

tetramerization under mild oxidizing conditions are correlated with the formation of a

disulfide bond in p53 [141]. Reduction of disulfide bonds by thioredoxin and Ref-1

reactivates oxidized p53 and stimulates p53-mediated transactivation [142,143].

Interestingly, redox regulation of p53 in turn modulates cellular redox status. Sablina et al.

[144] reported that low levels of p53 in unstressed or physiologically stressed cells

upregulate several genes with antioxidant products, resulting in a decrease in intracellular

ROS levels. In contrast, downregulation of p53 causes oxidative DNA damage and

mutagenesis, which are prevented by an antioxidant supplement.

The role of endogenous p53 in atherosclerosis is controversial. p53 levels, cell proliferation,

and apoptosis are predominant in human plaque areas with chronic inflammation [145]. An

increase in macrophage p53 levels is associated with the enlargement of necrotic core,

plaque rupture, and transient ischemic attacks in patients with carotid atherosclerosis [146].

Adenoviral overexpres-sion of p53 increased VSMC apoptosis and induced plaque rupture

in preexisting atherosclerotic lesions [147]. However, Mercer et al. [148] demonstrated that

endogenous p53 reduces atherosclerosis by protecting VSMCs and stromal cells from death

and promoting apoptosis in macrophages. These data are supported by the observation of

Boesten et al. [149] that macrophage-specific deletion of p53 enhances plaque vulnerability

by increasing the lesion macrophage area and necrotic core formation.

Physiological roles of ROS

ROS regulate many physiological functions in the cardiovascular system under normal

conditions. For example, •NO mediates endothelium-dependent vasomotor tone and flow

responses in many vascular beds [150,151]. It is also suggested that •NO regulates

endothelium-dependent microvascular and epicardial vasodilation under metabolic

stimulation [152]. The functions of •NO include inhibition of platelet aggregation,

disaggregation of aggregated platelets, and inhibition of platelet as well as leukocyte

adhesion to the vascular endothelium [150,153,154]. Superoxide affects vascular tone by

inactivating •NO [155] as well as by dismutating to H2O2 [30]. Several studies suggest that

H2O2 is the endothelium-derived hyperpolarizing factor (EDHF) that regulates

vasorelaxation in murine and human mesenteric arteries and flow-induced dilation in human

coronary arterioles [156–159]. H2O2 and other hydroperoxides stimulate the activity of

cycloox-ygenase, also known as prostaglandin endoperoxide H synthase, to produce the
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vasodilator prostacyclin and other prostanoids [160–162]. This effect is termed the

“peroxide tone” and is evident at very low concentrations of peroxides (2–20 nM). It is

suggested that eNOS regulates the EDHF-like activity of H2O2 and that •NO and H2O2

compensate for each other to cause endothelium-dependent relaxation [156]. SOD may play

a critical role in endothelium-dependent relaxation by prolonging the half-life of •NO and by

converting the vasoconstrictor O2
•− to H2O2. In this context, it is worth noting that

prolonged SOD2 deficiency results in decreased agonist-induced aortic relaxation and

impaired aortic compliance in mice [163]. Both •NO and H2O2 regulate vasomotor tone by

activating the enzyme soluble guanylate cyclase (sGC) [164–166]. •NO activates sGC by

directly binding to the ferrous (Fe2 +) core of the heme prosthetic group, effecting a

conformational change [167]. The product cGMP causes vasodilation by relaxing VSMCs,

in part, by lowering Ca2+ by decreasing its influx, increasing efflux, promoting sequestration

in the endoplasmic reticulum, and attenuating mobilization [167,168].

Oxygen homeostasis at the tissue level is vital for development, growth, and survival, and

hence, cells have evolved a number of mechanisms to sense and respond to low oxygen

levels. In humans, glomus type I chemoreceptor cells of the carotid body, located at the

bifurcation of the carotid artery, release neurotrans-mitters in response to hypoxia and

increase alveolar ventilation [169]. The neuroepithelial bodies of the intrapulmonary airways

regulate hypoxic pulmonary vasoconstriction, optimizing ventilation–perfusion matching

[170]. In contrast, vasodilation occurs in response to hypoxia in systemic vascular beds,

such as coronary and cerebral circulations, to maintain O2 delivery [171]. In addition,

physiological adaptation to hypoxia includes activation of transcription factor HIF1 and its

downstream targets. HIF1 is a basic helix-loop-helix/PAS heterodimer, with an O2-sensitive

HIF1α subunit and a constitutive HIF1β (ARNT) subunit (Fig. 1). Hydroxylation of proline

residues 402 and 564 by prolyl hydro-xylases in normoxia enables HIF1α to interact with

the von Hippel-Lindau tumor suppressor protein, which has ubiquitin ligase activity, and

undergo degradation [172–175]. Hypoxia decreases hydroxylation of HIF1α and stabilizes it

by not allowing interaction with the von Hippel-Lindau tumor suppressor protein. In

cardiovascular cells, HIF1 induces the expression of genes involved in angiogenesis and

vascular remodeling, energy metabolism, erythropoiesis, vasomotor reactivity, and vascular

tone [176].

The mechanisms by which cells detect a decrease in O2 levels to cause activation of HIF1

are still emerging but considerable evidence supports the role of increased mitochondrial

ROS, particularly at complex III, in the induction of HIF1 under hypoxia [177–179].

Evidence in support of this notion includes increased ROS levels, as determined using

fluorescent probes and ESR spectroscopy, and decreased reduced glutathione and cysteine

levels [180–182]. Inactivation of Rieske iron–sulfur protein in mitochondrial complex III

abrogated hypoxic stabilization of HIF1 [183]. Mansfield et al. [184] demonstrated impaired

hypoxic HIF1 stabilization in murine embryonic cells lacking cytochrome c and therefore

mitochondrial activity, further supporting the necessity of mitochondrial ROS in this

process.

Low concentrations of ROS generated during ischemic preconditioning, in which one or

more short periods of ischemia are separated by short periods of reperfusion, confer cardiac
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protection by reducing necrosis and the severity of arrhythmias and improving functional

recovery when challenged with a longer period of ischemia [185–187]. Exogenous ROS

mimic the protective effect of ischemic preconditioning [188] and the protective effect of

preconditioning is decreased in the presence of antioxidants [189,190], suggesting that ROS

generation is an innate physiologic adaptive process against potentially lethal ischemic

injury. Ischemic preconditioning activates a number of signaling pathways, which converge

on the mitochondria, resulting in activation of the mitoKATP channel and inhibition of the

mitochondrial permeability transition pore [191]. More recently it was shown that ischemic

preconditioning preserves mitochondrial efficiency by decreasing H+ leak and ROS

production during ischemia-reperfusion [192].

ROS play a critical role in the activation of mechanotrans-duction signaling pathways that

regulate the physiology and pathophysiology of heart function. A physiologic stretch of

cardi-omyocytes, as happens in diastole, instantaneously increases ROS production via

activation of Nox2 in a microtubule-dependent manner, a process termed X-ROS signaling

[193]. Nox2 activation occurs in sarcolemmal and transverse tubule membranes and the

resultant increase in local ROS levels sensitizes the nearby ryanodine receptors (RyR2) in

the sarcoplasmic reticulum by oxidation. This triggers a burst of Ca2+ sparks, which causes

muscle contraction and normalization of X-ROS signaling [193,194]. When the Ca2 +

concentration drops to basal level, the muscle relaxes, completing the cycle [195]. Thus, the

release and recapture of Ca2+ by the sarcoplasmic reticulum in each contraction-relaxation

cycle underlies the heartbeat and is regulated by X-ROS signaling under normal

physiological conditions [194]. Exogenous H2O2 reversibly increases a Ca2+ spark rate

similar to that in a physiological stretch, and myocytes lacking Nox2 expression do not show

stretch-dependent increase in ROS levels, further supporting the role of ROS in cardiac

contraction and relaxation [193]. However, hyperactive X-ROS signaling may cause

cardiomyopathy through aberrant Ca2+ release from sarcoplasmic reticulum. Various redox

modifications, such as S-nitrosylation, S-glutathionylation, and disulfide crosslinking,

dysregulate RyR2 and cause abnormal Ca2+ in several disease states [196–199]. In addition

to the ryanodine receptors, the release and recapture of Ca2+ by the sarcoplasmic reticulum

is regulated by sarco/endoplasmic reticulum ATPase (SERCA) and several accessory

proteins, including phospholamban and calsequestrin [199]. SERCA, which transports

cytosolic Ca2+ into the lumen of the sarcoplasmic reticulum in an ATP-dependent manner, is

also regulated by redox mechanisms via the oxidation of cysteines or nitration of tyrosines.

SERCA is activated by low (physiologic) and inactivated by high pathological levels of

ROS because of irreversible oxidative modifications [200–203]. Activation of SERCA by

NO decreases the intracellular Ca2+ concentration, relaxing cardiac, skeletal, and vascular

smooth muscle. S-glutathionylation of Cys674 in SERCA2b—the major SERCA iso-form in

vascular smooth muscle—by ONOO− increases its activity in vascular smooth muscle

during normal endothelium-mediated relaxation [200]. The irreversible oxidation of this

residue in atherosclerosis impairs NO-induced vasorelaxation. Similarly, the positive

inotropic effects of HNO•− in normal and failing hearts involves increased Ca2+ into the

sarcoplasmic reticulum and is mediated by reversible S-glutathionylation of Cys674 in

SERCA2a —the major SERCA isoform in cardiac muscle [199,204,205].
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Insulin sensitivity plays a vital role in cardiovascular health, and chronic oxidative stress is

implicated in the development of insulin resistance, a state of diminished response to

endogenous insulin [206]. Strong experimental evidence from human and animal models

shows that increased mitochondrial ROS generation induces insulin resistance [206–208]

and this can be rapidly reversed with mitochondrial uncouplers, electron transport chain

(ETC) inhibitors, or mitochondrial superoxide dismutase (SOD2) mimetics or by

overexpression of SOD2 [208]. The mechanisms by which mitochondrial ROS might

contribute to insulin resistance include activation of JNK [209,210] and apoptosis signal-

regulating kinase 1 [211]. In contrast to the role of increased oxidative stress in insulin

resistance, recent evidence indicates that ROS also promote insulin sensitivity. Loh et al.

[212] reported that mice deficient in the cytosolic and mitochondrial antioxidant enzyme

glutathione peroxidase 1 (GPx-1) were protected from high-fat diet-induced insulin

resistance. The protection resulted from ROS-induced increase in PI3K/Akt signaling and

consequent AS160 phosphorylation and glucose uptake in the muscle, but not from altered

insulin receptor and insulin receptor substrate 1 activation. Consistent with this idea,

pharmacologic depletion of glutathione in C57BL/6J mice enhanced insulin sensitivity

[213]. Interestingly, mice are also protected from diet-induced obesity in both these models.

These data suggest that ROS have a physiological role in insulin sensitivity, and ROS levels,

difference in sensitivity of tissues to ROS, and pathophysiological background are the major

determinants of impaired versus enhanced insulin sensitivity [214,215].

Sources of ROS

Mitochondria

Mitochondria are the major source of ROS in mammals under physiological conditions

[1,216] and increased mitochondrial ROS production underlies cardiovascular and many

other diseases [4,217–224]. The mitochondrial ETC is the main source of ROS production in

mitochondria [225]. Electrons from NADH and FADH2 generated in the Krebs cycle are

transferred through the ETC to reduce molecular oxygen to water, a process that involves

four one-electron reduction reactions. Complex IV (cytochrome c oxidase), the terminal

component of the ETC, retains all the partially reduced intermediates until full reduction of

oxygen is achieved. However, other complexes may leak electrons, generating O2
•− by the

partial reduction of oxygen.

Complex I and III are the main sources of O2
•− production in mitochondria [225], with the

former being the predominant source in vivo [226,227]. Whereas O2
•− from complex I is

released into the matrix, complex III-derived O2
•− is released into both the mitochondrial

matrix and the intermembranous space [228,229]. Superoxide production from complex I

occurs in vivo when NADH levels are high, from damage to the respiratory chain, slow

respiration, or ischemia [2]. This may occur by the mitochondrial loss of cytochrome c, as

happens in the failing human heart [230,231], and probably by the inhibition of cytochrome

c oxidase by enhanced formation of •NO [232]. ROS production also depends on the

metabolic state of mitochondria, with more O2
•− production in State 4 respiration (low

oxygen consumption, electron flow, and ATP synthesis, limiting ADP level; high

NADH/NAD+ ratio) than in State 3 respiration (high electron flow, fast ATP synthesis,
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partial depolarization, and decreased NADH/NAD+ ratio) [233]. It has been suggested that

an increase in pathophysiological ROS levels would occur at the extremes of overall

intracellular and intramitochondrial redox potential, which in turn depends on redox couples

involved in ROS generation (NADH/NAD+) and ROS scavenging (NADPH/NADP+) [234].

An increase in ROS generation occurs when mitochondrial redox potential is significantly

reduced, as happens in hypoxia, or significantly oxidized, as may happen during heart

failure. In the latter case, the increase in ROS levels results from a depletion of antioxidant

capacity as a consequence of the decrease in NADPH levels. Recently, it was shown that

elevated [Na+] in cardiomyocytes of failing hearts reduced mitochondrial Ca2+ by

accelerating Ca2+ efflux and decreased NADPH levels resulting in increased mitochondrial

ROS formation [235]. A decrease in Ca2+ during increased workload attenuates the

mitochondrial antioxidant capacity by decreasing the activity of Krebs cycle

dehydrogenases.

In addition to the inner membrane, ROS are also produced at other sites in mitochondria

[236]. For example, the p66Shc protein, partially localized in the mitochondrial

intermembrane space, forms a molecular complex with cytochrome c and subtracts

electrons, resulting in a reduction of oxygen and formation of H2O2 [237]. Data from

experimental animal models suggest that activation of p66Shc plays a role in cardiovascular

pathophysiology. Mice deficient in p66Shc were protected against AngII-induced myocardial

damage [238] and diabetic cardiomyopathy [239] and early atherogenesis induced by a high-

fat diet [240].

Monoamine oxidase, existing in two isoforms (MAO A and MAO B), is a mitochondrial

outer-membrane-bound flavoprotein and is another important source of mitochondrial ROS

that catalyzes the deamination of neurotransmitters and biogenic amines [241]. H2O2

generated during degradation of serotonin by MAO A induced receptor-independent

apoptosis in isolated cardiac myocytes, and MAO inhibitors significantly decreased in vivo

myocardial injury during ischemia–reperfusion [242]. Increased MAO A activity coupled

with high intramyocardial norepinephrine levels plays an important role in the evolution of

maladaptive hypertrophy into cardiac failure [243].

NADPH oxidases

Nox’s, a family of enzymes with the sole function of producing ROS, are implicated in the

pathophysiology of many cardiovascular diseases [244]. The phagocyte (neutrophils and

macrophages) oxidase, the first characterized NADPH oxidase, is a multicompo-nent

complex that catalyzes the formation of O2
•− during phagocytosis [245]. In the resting cell,

the phagocyte NADPH oxidase has a membrane-bound catalytic core of the enzyme,

flavocytochrome b558, and the cytosolic regulatory subunits p47phox, p40phox, p67phox,

and small G-protein Rac1 or Rac2. The flavocytochrome b558 is a heterodimer consisting of

a large glycoprotein, gp91phox (Nox2), and a small protein, p22phox, and the close

association of these two proteins stabilizes the flavocytochrome [246].

Upon cell stimulation, the regulatory subunits translocate to the membrane and assemble

with the flavocytochrome b558 to cause activation of the enzyme. In the resting neutrophils,

p47phox, p67phox, and p40phox exist as a complex stabilized by SH3 domain interactions
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[30,247], whereas Rac is tethered to RhoGDI, a RhoGDP-dissociation inhibitor [248].

However, binding to the flavocytochrome is prevented because p47phox exists in an

autoinhibited conformation in which its tandem SH3 domains are masked owing to

intramolecular interaction with the C-terminal segment. During activation, multiple serine

residues in the C-terminus of p47phox are phosphorylated, liberating the N-terminal SH3

domain for interaction with the proline-rich region of p22phox and translocation to the

membrane [249–252]. This allows the proline-rich activation domain in p67phox to bind

with an activation sequence in the C-terminus of Nox2 to initiate electron transfer, thus

activating the enzyme [30,253].

The existence of similar, albeit lower ROS-generating, oxidases in nonphagocytic cells has

been identified in the past decade, with the identification of Nox1, the first homolog of Nox2

[254]. Unlike the phagocyte oxidase, the nonphagocyte oxidases are active during normal

metabolism and generate low levels of ROS even in the absence of extrinsic stimulation;

however, their ROS generation is increased in response to agonist stimulation. In total, the

Nox family comprises seven members, each with a distinct catalytic isoform: Nox’s 1–5 and

Duox1 and Duox2 [246,248]. The predicted structure of Nox’s 1–4 consists of an N-terminal

transmembrane region with six α-helical domains containing four conserved histidines, two

each in the third and fifth domain spanning two asymmetrical hemes. The cytoplasmic C-

terminus dehydrogenase domain contains conserved binding sites for FAD and NADPH.

Nox5 is distinct from Nox’s 1–4 by the presence of a calmodulin-like EF domain with four

Ca2+-binding sites in the long N-terminus, which enables rapid enzyme activation in

response to elevated cytosolic Ca2+ levels [255,256]. The Duox proteins are further different

from Nox5 in containing an N-terminal perox-idase-like domain that is connected to the EF

domain by an additional transmembrane domain [257–259].

The expression of Nox catalytic subunits varies among different cell types of the

cardiovascular system, with more than one subunit expression in the cell types [30] (Table

1). Nox1 is mainly expressed in VSMCs [10,254,260,261], although endothelial cell

[10,262] and fibroblast [10] expression was also observed. Nox2 is present in endothelial

cells [10,263,264,265,266], fibroblasts [267], cardiomyocytes [268,269], and VSMCs in

human resistance arteries [270]. Nox4 expression is fairly abundant in VSMCs

[10,271,272,273], endothelial cells [10,264], fibroblasts [10,274], and cardiomyocytes

[275,276]. Nox5 is present in human VSMCs [277] and endothelial cells [278], whereas it is

absent in rodents [279]. Nox3 and Duox2 expression was not reported in cardiovascular

cells, but Kalinina et al. [280] observed Duox1 expression in the human aortic VSMCs.

Like Nox2, binding with p22phox is essential for the activity of Nox1 and Nox4. For Nox1,

the cytosolic regulatory subunits are NoxO1 and NoxA1, the homologs of p47phox and

p67phox, respectively, as well as Rac1. However, the subunit expression and NADPH

oxidase composition may vary depending on the vascular beds and species. We and others

have recently shown that Nox1 interacts with p47phox and NoxA1 in mouse VSMCs

[11,281]. Nox4 does not require interaction with cytosolic regulatory subunits for activity

and hence is constitutively active, with regulation mainly dependent on expression levels.

Nox5, Duox1, and Duox2 activities are regulated by Ca2+ and do not require any subunit for

activation [246].
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Activated NADPH oxidases (Nox1 and Nox2) generate O2
•− by transferring two electrons

from NADPH in the cytosol to FAD and then to the two heme groups, with the second heme

group reducing two successive molecules of molecular oxygen on the other side of the

membrane [246,282]. Because the transfer of electrons across the plasma membrane

generates depolarization, electroneutrality is ensured by the conduction of protons, which

are generated from the NADPH hydrolysis in the cytosol, through a channel in the oxidase

[283–285]. In contrast, Nox4 predominantly produces H2O2, which has been attributed to

Cys226, Cys270, and a highly conserved His222 residue in the third extracytosolic loop

[286]. The histidine could serve as a source of protons for the spontaneous dismutation of

O2
•− forming H2O2. ROS production from NADPH oxidases could be either extracellular or

intracellular depending on the biological membranes in which the enzyme is expressed,

which include plasma membrane, endosome, phagosome, caveolae, endoplasmic reticulum,

mitochondria, and nucleus. Nox1, Nox2, Nox4, and Nox5 can be located either at the plasma

membrane or within the cell and hence can generate extracellular or intracellular ROS [287].

Xanthine oxidase

Xanthine oxidase (XO) has been identified as a major source of O2
•− in atherosclerosis

[288,289] and congested heart failure [290,291]. XO and xanthine dehydrogenase (XDH)

are interconvertible isozymes of the enzyme xanthine oxidoreductase (XOR) and catalyze

the final two steps of the purine (adenosine) degradation pathway, reducing hypoxanthine

and xanthine to uric acid. However, XDH preferentially reduces NAD+, whereas XO

reduces only molecular O2, producing O2
•− and H2O2. XDH is the predominant form in

well-oxygenated tissue [292], which is converted to XO by reversible sulfhydryl oxidation

or by irreversible proteolytic modification [293] under pathophysiological conditions such

as ischemia-hypoxia [294,295]. Both forms of the enzymes act as NADH oxidases

generating ROS, with the oxidation induced by XDH higher than that observed with XO

[296,297], which may play an important role in cellular injury under conditions of increased

NADH concentration, as happens in ischemia [298].

XOR has wide tissue distribution, but its plasma levels, low in healthy mammals, increase

significantly under pathophysiological conditions [299]. Circulating XO binds to the

vascular endothelial cells because of its affinity with the positively charged glycosami-

noglycans on the cell surface [300,301], generating ROS and decreasing the bioavailability

of •NO to cause endothelial dysfunction and impair vasorelaxation [289]. This is supported

by the data, which show an inverse relationship between endothelium-bound XO activity

and endothelium-dependent vasodilation in patients with CAD [302]. Increased functional

XOR levels were observed in monocytes/macrophages in drug- and coronary artery ligation-

induced heart failure in rats [303]. However, this increase was not observed in hypertrophic

ventricles, suggesting its potential role in the progression from cardiac hypertrophy to heart

failure. Supporting this notion, a significant increase in endothelium-bound XO activity was

observed in patients with chronic heart failure [304].

Nitric oxide synthases

The NOS family of enzymes generates •NO from the conversion of L-arginine to L-

citrulline. NOSs are homodimeric oxidoreduc-tases in which the heme-containing
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oxygenase domain is linked via a calmodulin-binding linker peptide to a NADPH-

cytochrome P450 reductase-like diflavin domain [305]. Upon activation, the FAD of the

flavoprotein domain transfers electrons from NADPH to FMN, which reduces heme iron

and results in O2 activation followed by oxidation of the guanidino N atom of L-arginine,

forming •NO and citrulline. BH4, a cofactor and critical determinant of the enzyme activity,

binds close to the heme active site at the interface of the two monomers, stabilizing the

dimer [306,307].

Three NOS isoforms are present in the cardiovascular system, of which neuronal (nNOS)

and eNOS are constitutive, with activity regulated at a posttranslational level [308]. The

iNOS isoform is produced in response to proinflammatory agonists such as cytokines and is

regulated mostly at the transcriptional level [309].

Under normal conditions, eNOS exerts antiatherogenic effects in the vascular wall,

including inhibition of cell growth [310,311], leukocyte adhesion [153], and platelet

aggregation [312]. Increased coronary atherosclerosis observed in eNOS-deficient apoE−/−

mice on a Western-type diet [313,314] was attributed to increased inflammation and

leukocyte-endothelial interaction [315]. •NO derived from eNOS regulates VSMC tone and

blood pressure as evidenced by systemic hypertension in eNOS-knockout mice [316,317]

and hypotension in eNOS-transgenic mice [318]. In the heart, eNOS is expressed in the

endocardium and cardiomyocytes and eNOS−/− mice exhibit attenuated left-ventricular

function and increased mortality after myocardial infarction and during chronic pressure

overload [319,320]. However, when eNOS activity becomes “uncoupled,” as happens in

pathophysiological conditions, increased O2
•− generation occurs because the transfer of

electrons from NADPH through the flavins to molecular oxygen continues [307] (discussed

later in regard to endothelial dysfunction).

In contrast, a rapid and large increase in •NO generation by upregulation of iNOS expression

and activity was linked to cardiovascular pathology. Wild-type mice with iNOS deficiency

had increased myocardial contractility and decreased mortality after myocardial infarction

[321] and were protected from systolic overload-induced myocardial dysfunction [322],

whereas apoE−/− /iNOS−/− mice had a significantly reduced atherosclerotic lesion area [323–

325]. However, the role of iNOS in cardiovascular pathology was questioned as its

overexpression in the mouse myocardium had no effect on viability and left-ventricular

function [326]. It is likely that the high flux of •NO from iNOS has pathological effects only

under oxidative stress conditions, particularly with increased O2
•− levels [327].

In addition to neurons [328], nNOS is expressed in skeletal muscle [329], kidney [330],

endothelial cells and SMCs [331], and cardiomyocytes [332]. Recent evidence indicates that

nNOS has a protective function against atherosclerosis and in the heart. Kuhlencordt et al.

[333] reported increased atherosclerotic plaque formation and decreased survival in nNOS-

deficient apoE−/− mice. The physical proximity of nNOS to XOR in sarcoplasmic reticulum

of the cardiomyocytes regulates the activity of the latter and nNOS deficiency decreases

myocardial excitation coupling via increased activity of XOR [334].
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Lipoxygenases

Lipoxygenases (LOXs), non-heme iron-containing dioxygenases that oxidize

polyunsaturated fatty acids released from the cell membrane under inflammatory conditions

to hydroperoxy fattyacid derivatives, are another important source of ROS production in the

vascular wall [335,336]. Humans have six ALOX genes (LOX genes are named “ALOX” by

convention, for arachidonic acid lipoxygenase), whereas mice have seven functional genes

[337] and the LOX enzymes are named for the numbered carbon atom of the

polyunsaturated fatty acid that gets oxidized (e.g., 5-LOX). Of the LOXs, 5-LOX and 12/15-

LOX (also known as leukocyte-type LOX and 15-LOX1; referred to as 12/15-LOX as they

can form similar products from common substrates) are important for cardiovascular

function and atherosclerosis because of their expression in the vascular wall and

inflammatory cells [337]. Mice express only 12-LOX and not 15-LOX [338].

5-LOX catalyzes the transformation of free arachidonic acid to leukotriene A4, which on

hydrolysis yields leukotriene B4 (LTB4), a potent chemoattractant and leukocyte activator

[339]. The conjugation of leukotriene A4 with glutathione by the action of leukotriene C4

synthase yields cysteinyl leukotrienes, which are associated with vasoconstriction. 5-LOX

and LTB4 are highly expressed in human atherosclerotic plaques and LTB4 is involved in

SMC recruitment [340,341]—antagonism of its receptor decreases monocytic foam cells in

mice [342].

12/15-LOX catalyzes the oxidation of arachidonic acid to yield 12- and 15-

hydroperoxyeicosatetraenoic acids (12- and 15-HPETEs), which are rapidly reduced by

cellular peroxidases to the corresponding hydroxides, 12-HETE and 15-HETE, respectively

[336]. This enzyme also oxidizes α-linoleic acid, another polyunsaturated ω-3 fatty acid,

generating 13-hydroperoxyoctadecadienoic acid (13-HPODE), which is reduced to 13-

HODE. In addition to free fatty acids, 12/15-LOX oxidizes polyunsaturated acyl chains in

phospholipids and cholesteryl esters, key lipid components of LDL [343,344]. In

macrophages, LDL oxidation requires binding LDL particles to the low-density lipoprotein

receptor-related protein [345] and translocating 12/15-LOX from the cytosol to the plasma

membrane [346]. Another line of evidence for the role of 12/15-LOX in LDL oxidation

comes from the 12/15-LOX, apoE double-knockout mice on a high-fat diet, which have less

atherosclerosis, significantly lower titers of autoantibodies against oxidized LDL in plasma,

and lower isoprostane levels in urine compared with apoE−/− mice [347]. Protection against

atherosclerosis in the 12/15-LOX, apoE double-knockout was attributed in part to decreased

adhesion of monocytes to endothelial cells [348,349], an initiating event in atherogenesis,

resulting from decreased activation of RhoA and NF-κB [350,351]. As a corollary to this,

the overexpression of human 15-LOX in the vascular endothelium of LDL receptor-deficient

mice enhanced early atherosclerosis [352]. However, some reports suggest that 12/15-LOX

products may also exert an antiatherogenic effect because of their anti-inflammatory and

vasodilatory properties [336].

12/15-LOX is markedly upregulated in heart failure, and transgenic mice with

cardiomyocyte-specific overexpression of the enzyme develop systolic dysfunction, aging-

associated cardiac fibrosis, and increased macrophage infiltration and MCP-1 expression

[353]. Supporting this, 12/15-LOX-deficient mice had significantly reduced cardiac MCP-1
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expression, macrophage infiltration, and reduced systolic dysfunction during chronic

pressure overload.

Myeloperoxidase

Myeloperoxidase (MPO) generates several oxidants that initiate lipid peroxidation and

induce modification of amino acid residues in proteins, including nitration, chlorination, and

carbamylation [31]. Brennan et al. [354] demonstrated a significant decrease in 3-

nitrotyrosine levels in MPO-deficient mice in response to inflammation. In addition, MPO-

deficient mice had a significant reduction in the levels of F2-isoprostanes, HPETEs, and

HPODEs in an acute model of inflammation, supporting a major role for MPO in in vivo

lipid peroxidation [355]. Immunofluorescent staining revealed the presence of MPO in the

neutrophils in intermediate and advanced atherosclerotic lesions of LDLR−/− mice [356].

MPO induces protein carbamylation in the presence of H2O2 at sites of inflammation and in

atherosclerotic plaques by the oxidation of thiocyanate, an anion abundant in blood whose

levels are elevated in smokers [357]. The product, cyanate, then covalently modifies lysine

residues in proteins and lipoproteins, forming homocitrul-line (e-carbamyllysine). LDL-

homocitrulline stimulates foam cell formation, VSMC proliferation, and endothelial

apoptosis. In addition, the blood levels of protein-homocitrulline correlated with increased

cardiovascular risk in case-control studies. An increase in LDL carbamylation in human

atherosclerotic lesions by MPO causes cholesterol accumulation and lipid-droplet formation

in macrophages through enhanced binding to the LDL receptor SR-A1. Similarly, an

increase in HDL carbamylation by MPO induces cholesterol accumulation in macrophages

through enhanced binding to the scavenger receptor SR-B1 [358]. More recently, Shao et al.

[359] demonstrated that chlorination of Tyr192 in apoA-I of HDL in human plasma and

atherosclerotic tissue generates dysfunctional HDL.

The proinflammatory and proatherogenic actions of MPO may include promotion of

leukocyte recruitment at sites of inflammation by its positive surface charge [360]. MPO-

deficient mice had reduced neutrophil infiltration in inflamed tissues, and an infusion of

MPO into the circulation caused neutrophil adhesion even in uninflamed blood vessels,

supporting the notion that neutrophil recruitment is mediated by the strong positive charge

of MPO. However, it is suggested that MPO augments adhesion molecule-mediated

interaction only between endothelial cells and neutrophils. In addition, a significant increase

in systemic MPO levels was associated with coronary plaque erosion in patients with acute

coronary syndrome [361]. Together, these data provide evidence that oxidative stress

mediated by MPO could increase atherogenicity.

Substantial evidence also suggests that MPO converts nitrite, a major end product of •NO

metabolism, into RNS, most probably nitrogen dioxide (•NO2), in a H2O2-dependent

reaction [362–365]. The •NO2 generated by the MPO-H2O2-nitrite system catalyzes the

nitration of tyrosine residues and oxidation of tryptophan residues and promotes lipid

peroxidation of LDL [363,366]. However, MPO-generated •NO2 is not a major product,

particularly in human leukocytes, and its significantly greater amounts in murine compared

with human phagocytes might be due to higher local nitrite concentrations in the mice [367–

370].
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Endothelial dysfunction

Robert Furchgott [371] first demonstrated that relaxation of blood vessels by acetylcholine

requires the presence of endothelial cells, whereas Rubanyi et al. [372] observed that this

process is mediated by the release of a vasoactive substance, termed endothelium-derived

relaxing factor (EDRF). The EDRF diffuses to the VSMCs and induces the production of

cGMP by stimulating sGC [373]. cGMP activates PKG, causing a decline in cytosolic Ca2+,

which in turn suppresses the activity of myosin light chain (MLC) kinase, resulting in

increased levels of dephosphorylated MLC and relaxation of SMCs [374]. Activation of

MLC phosphatase by PKG also causes vasodilation by increasing dephosphorylated MLC

levels. The EDRF, which is rapidly degraded by O2
•−, was identified as •NO [375,376],

synthesized by NOS, mostly eNOS in the vasculature [377,378].

In addition to the regulation of vasodilation, endothelium modulates inflammation, SMC

growth, platelet aggregation, and coagulation, and the dysregulation of these processes is

termed “endothelial dysfunction,” which is evident as impaired vasorelaxation in response to

endothelium-dependent vasodilators such as acetylcholine [379]. The healthy endothelium

responds to vasoactive agonists released from the aggregating platelets by the activation of

eNOS and increased production of •NO [380,381]. With endothelial injury, the aggregating

platelets come into contact with VSMCs, causing contraction by releasing thromboxane A2

and serotonin [382]. The endothelium-dependent response to aggregating platelets is highly

active in the coronary and cerebral circulations.

Endothelial dysfunction is an initial event in the development of atherosclerosis and

ischemic heart disease [383,384] and an independent predictor of CVD [385–388].

Schächinger et al. [389] demonstrated that coronary endothelial vasodilator dysfunction is a

prognostic indicator of cardiovascular events, including cardiovascular death, unstable

angina, myocardial infarction, and ischemic stroke. In a 30-day follow-up of nonemergent

vascular surgery, patients in the upper tertile of brachial artery flow-mediated dilation ( 4

8.1%) had significantly fewer adverse cardiovascular events than patients with low flow-

mediated dilation [384]. Similarly, endothelial dysfunction in the forearm has been shown to

predict adverse cardiovascular events in subjects with no apparent heart disease [390] as

well as in patients with peripheral arterial disease [391,392]. Increased ROS production and

impaired endothelium-dependent and -independent vasodilator responses resulting from

eNOS uncoupling in platelets were observed in patients with congestive cardiac failure

[393].

The mechanisms underlying endothelial dysfunction are multifactorial [394,395], with

oxidative stress playing a major role. The kinetics of the reaction of O2
•− with •NO are three

times faster than the reaction rate of O2
•− with SOD. Thus, it is likely that some O2

•− always

reacts with •NO within the cells and extracellular space, but endogenous antioxidant

defenses minimize this interaction [396]. However, in pathophysiological conditions such as

in hypercholesterolemic rabbits, impaired endothelium-dependent vascular relaxation results

from the interaction of •NO with O2
•−, because polyethylene-glycolated SOD markedly

improved endothelium-dependent vascular relaxation in these but not in

normocholesterolemic animals [397]. Hypercholesterolemia also enhances oxidative stress
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by upregulating the expression of the AT1 receptor, genetic disruption of which improved

endothelial function and inhibited diet-induced atherosclerosis in apoE−/− mice [398].

Likewise, oxidized LDL but not native LDL inhibits endothelium-dependent relaxation in

isolated vessels [399], whereas antioxidant vitamins enhance endothelium-dependent

vasodilation in both the coronary and the forearm circulation in subjects with CVD

[400,401]. Emphasizing the role of oxidative stress in endothelial dysfunction, deletion of

various SOD isoforms impaired •NO-mediated arterial relaxation [402–404].

Another mechanism by which oxidative stress causes endothelial dysfunction is via the

uncoupling of the eNOS. Deficiency of either eNOS substrate L-arginine or eNOS cofactor

BH4 induces eNOS uncoupling to produce O2
•− and H2O2. Increased O2

•− production in the

aortas of spontaneously hypertensive stroke-prone rats was reduced by treatment with NG-

nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, or removal of endothelium,

indicating that the tissue and enzymatic sources of this increased O2
•− are the endothelium

and eNOS, respectively [405]. Activation of arginase I, which degrades L-arginine, and

eNOS uncoupling were reported in diabetes, pulmonary hypertension, ischemia-reperfusion,

atherosclerosis, and aging [406–410]. Arginase inhibition restores NOS coupling and

reverses endothelial dysfunction [411].

Decreased BH4 availability, resulting in eNOS uncoupling, and increased oxidative stress

were observed in diabetes [412,413]. Intra-arterial infusion of BH4 improved endothelium-

dependent vasodilation in chronic smokers, supporting the notion that BH4 depletion

contributes to eNOS dysfunction [414]. BH4 supplementation reversed left-ventricular

hypertrophy (LVH), fibrosis, and cardiomyocyte dysfunction induced by pressure overload,

highlighting the importance of cardiac myocyte eNOS uncoupling in hypertrophic heart

disease [415,416]. Further support for the regulatory role of BH4 concentrations as a critical

determinant in eNOS uncoupling was evident in apoE−/− mice with endothelial-specific

overexpression of eNOS [417]. These mice had enhanced endothelium- and eNOS-

dependent O2
•−production and increased atherosclerosis compared with apoE−/− mice. BH4

supplementation attenuated both endothelial ROS and atherosclerosis. Consistent with these

data, endothelial-specific overexpression of GTP-cyclohydrolase 1, the rate-limiting enzyme

for BH4 synthesis, in apoE−/−/eNOS-transgenic mice partially restored eNOS coupling [418]

and decreased ROS levels and atherosclerosis [419,420]. In vivo depletion of BH4 could

also occur from oxidative modification by peroxynitrite [421]. Zou et al. [422] reported that

the main mechanism of peroxynitrite-induced eNOS uncoupling is the release of Zn from a

zinc-thiolate cluster, as this process is 10–100 times more sensitive than BH4 oxidation.

Serum asymmetrical dimethylarginine (ADMA), an endogenous L-arginine analog, is

inversely correlated with flow-mediated dilation in the brachial artery of subjects,

independent of risk factors for atherosclerosis [423]. ADMA inhibits eNOS activity by

competitive inhibition of endothelial cell arginine uptake. Furthermore, the activities of S-

adenosylmethionine-dependent protein arginine N-methyltransferases and dimethylarginine

dimethylaminohydrolase, enzymes involved in ADMA synthesis and degradation,

respectively, are redox sensitive, with the former enhanced and the latter decreased under

oxidative stress conditions [424,425].
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O2
•− required for eNOS uncoupling is generated by several sources. Administration of

oxypurinol, an inhibitor of XO, improved impaired vasodilation in hypercholesterolemic

[426] and CHF patients [427,428], implicating XO-derived O2
•−production in eNOS

uncoupling. However, Dworakowski et al. [429] reported that increased activity of Nox,

particularly of Nox4, contributes to increased O2
•− production and vascular endothelial

dysfunction in CHF patients. Impaired acetylcholine-induced relaxation of spontaneously

hypertensive aged rat aortas was significantly improved by VAS2870, a pan-Nox inhibitor,

by inhibiting the ectopically expressed Nox1 in endothelial cells [430]. Similarly, Nox1

overexpression in VSMCs impaired endothelium-dependent relaxation in response to AngII

infusion, which was reversed by BH4 supplementation [431].

Although vascular relaxation in large vessels mediated by endothelium-derived •NO

bioactivity is mainly dependent on O2
•− concentrations, endothelium-dependent relaxation

in small resistance vessels is mediated by H2O2 [31]. Matoba et al. [432] reported that

endothelium-dependent relaxation and hyperpolar-ization of VSMCs in the small mesenteric

arteries of mice in response to acetylcholine was inhibited by catalase and first proposed that

H2O2 is the EDHF. H2O2-dependent vascular relaxation was reported in subjects with CVD.

Miura et al. [159,433] reported that H2O2 has a more prominent role in flow-induced

dilation of coronary arterioles in subjects with CAD compared with those without CAD.

Also, under conditions of BH4 depletion, H2O2 mediates endothelium-dependent relaxation

in coronary arteries [434]. Likewise, in mice deficient in GTP cyclohydrolase H2O2

produced as a result of eNOS dysfunction mediates aortic relaxation in response to acetyl

choline [435]. However, the regulatory function of H2O2 may vary depending on the

vascular bed, species, age, and pathophysiological conditions. For example, the vascular

cell-specific overexpression of catalase decreased blood pressure in mice, indicating the

vasoconstrictive function of H2O2 [436]. Both genetic and pharmacological evidence

suggests that H2O2 also impairs endothelium-dependent vasorelaxation because

polyethylene glycol-catalase or transgenic overexpression of GPx-1 protected mice against

AngII-induced endothelial dysfunction of carotid arteries [437].

Atherosclerosis

Endothelial dysfunction and activation in the presence of atherosclerosis risk factors such as

hypercholesterolemia and hypertension induce the expression of the cell adhesion molecules

VCAM-1, ICAM-1, E-selectin, and P-selectin [438,439]. Activated endothelium also

permits increased permeability to macromole-cules such as LDL The induction of cell

adhesion molecules enables the adherence of circulating monocytes and T lymphocytes to

the endothelium and the subsequent transmigration into the subendothelial space. The

activation of inflammatory cells is associated with the stimulation of oxidant enzymes such

as NADPH oxidases and MPO, generation of ROS, and oxidation of phospholipids and

protein in LDL, resulting in the accumulation of oxidized LDL (oxLDL), an important

effector of atherogenesis [440,441]. ROS generated in the vascular wall cells as well as in

inflammatory cells by the activation of oxidant enzymes stimulates redox signaling

pathways that could affect atherogenesis at multiple levels [442].
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It was shown recently that oxLDL increases O2
•− generation in human aortic endothelial

cells by phosphorylating p66Shc at Ser36 [443]. This effect of oxLDL is dependent on the

binding of the lipoprotein to its LOX-1 receptor, followed by the sequential activation of

protein kinase Cp2 and c-Jun N-terminal kinase. Genetic deletion of p66Shc decreased

oxidative stress, lipid peroxidation, and atherosclerosis in apoE−/− mice, indicating the

important role of systemic oxidative stress in atherosclerosis [240,444]. Interestingly, the

PKCp–JNK pathway is a critical effector of oxLDL-mediated induction of MMP2

expression and activity, and deletion of PKCp2 or JNK2 significantly decreases oxidative

stress and atherosclerosis in apoE−/− mice [445–447]. Suppression of p66Shc expression

inhibited oxLDL-induced p47phox expression as well as ROS production, indicating that

NADPH oxidase is a major source of oxLDL-induced ROS in vascular cells [448]. Increases

in p66Shc mRNA levels were reported in patients with high plasma LDL levels [433] and in

angiographically confirmed CAD patients [449], implicating oxidative stress in

atherogenesis.

In addition to oxidizing LDL, oxidative stress also affects cardiovascular health by

inhibiting the cholesterol efflux function of HDL. Myeloperoxidase-induced chlorination of

apoA-I, the major protein component of HDL, impairs the ability of apoA-I to promote

cholesterol efflux through ABCA1, the macrophage ATP-binding cassette transporter

[450,451]. The lecithin-cholesterol acyltransferase (LCAT) binding site on apoA-I is the

preferred target for oxidative modification in atheroma, which diminished LCAT activity,

resulting in a dysfunctional form of HDL [452–454]. This, in turn, could increase ROS

production and inflammation, as Peshavariya et al. [455] showed that reconstituted HDL

(apoA-I complexed with 1-palmitoyl-2-linoleoyl phosphatidylcholine in a molar ratio of

1:100) inhibits leukocyte NADPH oxidase activity, probably by disrupting the assembly of

the enzyme subunits at lipid rafts. It is suggested that MPO catalyzes oxidation of HDL and

converts it into a proinflammatory molecule [456].

Further supporting the proatherogenic role of MPO, Sugiyama et al. [457,458] reported the

accumulation of a subset of MPO-containing macrophages in the subendothelial space at

sites of coronary plaque erosion or rupture and suggested that MPO-positive macrophage-

derived HOCl promotes acute coronary syndrome by stimulating endothelial cell death and

tissue factor expression. Additional evidence for the role of MPO in the pathophysiology of

atherosclerosis is evident in population-based studies of initially healthy men and women in

whom high levels of circulating MPO were predictors of future risk of CHD [16,459,460].

Evidence accumulated over the past decade has shown increased expression of NADPH

oxidase subunits and increased ROS levels in human atherosclerotic lesions, indicating the

clinical relevance of redox signaling and oxidative stress in atherosclerosis. Sorescu et al.

[10] reported increased Nox2 and p22phox expression along with increased O2
•− generation

in the shoulder region of atherosclerotic plaques. Azumi et al. [461,462] observed increased

p22phox expression and ROS generation in atherosclerotic coronary arteries and in the

coronary plaques of unstable angina patients. Simultaneous intravascular ultrasound and

immunohistochemical analysis indicated that NADPH oxidase-derived ROS are involved in

the coronary arterial remodeling associated with plaque vulnerability [463].
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Evidence for the contribution of NADPH oxidase-derived ROS to atherosclerosis was also

found in experimental mouse models that are deficient in various subunits of NADPH

oxidase (Table 2). We demonstrated decreased aortic ROS levels in mice that are deficient

in p47phox and decreased aortic atherosclerotic lesion area in apoE−/−/p47phox−/− compared

with apoE−/− mice [3,464]. A decrease in the atherosclerotic lesion area and attenuated

neoin-timal hyperplasia in response to arterial injury in apoE−/− -/p47phox−/− compared with

apoE−/− mice is associated with decreased expression of adhesion molecule CD44 in aortic/

arterial cross sections [464]. An allogeneic, sex-mismatched bone marrow transplantation

study demonstrated that the atheroprotective effect of p47phox deletion resulted from the

inhibition of NADPH oxidase in the vascular wall cells as well as in bone marrow-derived

monocytes/macrophages [465]. Absence of a functional NADPH oxidase in neointimal

SMCs caused attenuated activation of redox-sensitive mitogenic proteins, including Janus

kinase 2, and decreased neointima formation in apoE−/−/p47phox−/− mice. Interestingly,

Fenyo et al. [466] reported that the Janus kinase 2 inhibitor tyrphostin AG490 decreased the

expression of Nox1, Nox2, and Nox4 subunits and NADPH oxidase activity and reduced the

atherosclerotic lesion size in apoE−/− mice that were fed a high-fat diet. Our data on the

effect of p47phox deficiency in atherogenesis in apoE−/− mice are supported by recent

evidence of decreased aortic ROS production, increased •NO bioavailability, and

significantly reduced atherosclerotic lesion size in apoE−/−/ Nox2y/- compared with apoE−/−

mice fed a high-fat diet [263]. Similarly, reduced neointima formation in response to arterial

injury and decreased leukocyte accumulation was observed in Nox2y/- mice [467]. Recent

data also indicate that Nox1 activation contributes to atherosclerosis. The aortic

atherosclerotic lesion area and the macrophage content in the aortic sinus area were

significantly decreased in apoE−/−/Nox1y/- compared with apoE−/− mice that were fed a

high-fat diet [468]. Nox1 is also involved in the response to vascular injury as attenuated

wire injury-induced femoral artery neointima formation and decreased VSMC proliferation

and migration were observed in Nox1y/− compared with wild-type mice [469]. Mechanistic

studies revealed that Nox1 regulates VSMC migration by modulating the actin cytoskeleton

via its effects on cofilin (a regulator of actin depolymerization), mDia1 (a RhoA adapter

protein), and PAK1 (a serine/threonine kinase that promotes cytoskeletal reorganization).

We demonstrated that adenovirus-mediated overexpression of the Nox activator NoxA1

increases neointimal hyperplasia in injured mouse carotid arteries and that NoxA1

expression is increased in aortas and atherosclerotic lesions of apoE−/− mice and in human

carotid atherosclerotic lesions [11]. Furthermore, we showed that an inhibitor of Nox1 and

Nox4, GKT136901, decreases ROS generation and expression of CD44 and its principal

ligand, hyaluronan, in atherosclerotic lesions [134].

Endogenous antioxidant systems protect against atherogenesis, by virtue of their ability to

scavenge ROS, facilitate endothelium-dependent vasorelaxation, inhibit inflammatory cell

adhesion to endothelium, and alter vascular cellular responses, such as VSMC and

endothelial cell apoptosis, VSMC proliferation, hypertrophy, and migration [470]. The

protective role of SOD isoforms against atherogenesis has been elucidated using genetically

modified mouse models. Overexpression of SOD1 and catalase or over-expression of

catalase alone decreased plasma and aortic F2-isoprostane levels and retarded

atherosclerosis in apoE−/− mice [471]. We showed that increased mitochondrial oxidant
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generation, resulting from SOD2 deficiency, induced mitochondrial DNA damage and

accelerated atherosclerosis in young apoE−/− mice [4]. Interestingly, mitochondrial DNA

damage not only correlated with the prevalence of aortic atherosclerosis in humans and

apoE−/−mice, but also preceded atherogenesis in young apoE−/− mice. We also demonstrated

that SOD1 and SOD2 deficiency results in SMC hyperplasia and hypertrophy, albeit through

preferential activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated

protein kinases in SOD1+/− SMCs and the Janus kinase/signal transducer and activator of

transcriptase pathway in SOD2+/− SMCs [472]. It was shown that recombinant SOD3

decreases LDL oxidation by endothelial cells [473,474]. Supporting the role of SOD3 in

atheroprotection, Wang et al. [475] reported that low levels of plasma SOD3 are

independently associated with a history of myocardial infarction in patients with

angiographically documented CAD.

Further highlighting the importance of antioxidant defenses in atherosclerosis, Torzewski et

al. [476] reported increased aortic ROS levels, decreased •NO levels, and increased

atherosclerosis in apoE−/− mice that were deficient in GPx-1. Congruent with this,

overexpression of GPx-4 reduced aortic F2-isoprostane levels and decreased atherosclerosis

and delayed lesion progression in apoE−/−mice [477]. Human studies also indicate that

GPx-1 is important in protection against atherosclerosis. For instance, GPx-1 activity is

either decreased or absent in human carotid atherosclerotic lesions and its absence is

associated with lesion severity [478]. In a prospective study of 636 patients with CAD, low

GPx-1 activity in erythrocytes was associated with an increased risk of cardiovascular

events independent of traditional risk factors or atherosclerosis [479]. In fact, a meta-

analysis of 42 case-control and 3 prospective studies revealed that higher activities of

circulating GPx, SOD, and catalase confer protection against CHD [480].

Paraoxonase, which exists in three isoforms (PON1, PON2, and PON3), is another

antioxidant enzyme that has atheroprotective effects. PON1 is associated with HDL and was

shown to block LDL as well as HDL oxidation in vitro ([481,482]. Congruent with this,

PON1-knockout mice had higher levels of oxidized phospholipids compared with wild-type

mice, and HDL from these mice was unable to block LDL oxidation in vitro [483].

Furthermore, PON1 deficiency increased aortic atherosclerosis in wild-type and

apoE−/−mice [483,484]. PON2 was shown to attenuate macrophage triglyceride

accumulation and foam cell formation via the inhibition of redox-sensitive microsomal

diacylglycerol acyltransferase 1 [485]. Devarajan et al. [486] reported that PON2-deficient

apoE−/− mice develop enhanced mitochondrial oxidative stress and exacerbated

atherosclerosis on both chow and Western diet. An increase in atheroprotection was

attributed to decreased apoptosis of vascular wall cells and macrophages, resulting from the

interaction of PON2 with mitochondrial coenzyme Q10. Correspondingly, PON3-transgenic

mice had significantly smaller atherosclerotic lesions on both B6 and apoE−/− backgrounds

when fed an atherogenic diet [487]. Likewise, adenoviral overexpression of PON3 not only

significantly decreased the atherosclerotic lesion area but also lowered the serum lipid

hydroperoxide levels and enhanced the ability of cholesterol-loaded macrophages to efflux

cholesterol [488]. Highlighting the clinical relevance of PON1 against systemic oxidative

stress and atherosclerosis, Bhattacharyya et al. [489] reported that patients in the highest

PON1 activity quartile had a lower incidence of cardiac events compared to those in the
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lowest quartile. Together, cell culture data, experimental mouse models (Table 2), and

human studies support a contributory role for oxidative stress and redox-sensitive signaling

in atherogenesis.

Hypertension

In 1991, Nakazono et al. [490] indicated a role for ROS in the etiology of hypertension

when they observed a significant decrease in the blood pressure of spontaneously

hypertensive rats, an animal model of hypertension, after the administration of heparin-

bound SOD1. Increased oxidative stress is also associated with many other experimental

models of hypertension, including spontaneously hypertensive stroke-prone rats and

surgically induced, hormone-induced, and diet-induced hypertension [491]. In addition to

the vasculature, the mechanisms of ROS-induced hypertension involve other organ systems

such as the heart, kidneys, and central nervous system.

Supporting the role of NADPH oxidase in hypertension, an increase in the activity of this

enzyme was observed in VSMCs and endothelial cells upon stimulation with AngII

[492,493], as well as in various animal models of hypertension, such as those induced by

AngII [494,495] and deoxycorticosterone acetate (DOCA-salt) [496]; in renovascular

hypertension [497]; and in spontaneously hypertensive rats [498]. The causative role of

various Nox homologs or Nox subunits in hypertension is elucidated using genetically

altered mice. Genetic deletion of Nox1 in mice resulted in the loss of sustained blood

pressure increase induced by AngII infusion [499,500], and L-NAME abolished the effect of

Nox1 deletion on the pressor response to AngII. However, endothelium-dependent vascular

relaxation was preserved in AngII-infused Nox1y/- aortas [499], suggesting that Nox1-

derived ROS are important in hypertension. Supporting these data, overexpression of Nox1

in VSMCs increased medial O2
•−production in response to AngII infusion, which resulted in

eNOS uncoupling, decreased •NO bioavailability, impaired vasorelaxation, and an increase

in systolic blood pressure [431,500].

Nox2 expression is increased in several organ systems in hypertension and particularly in

resistance arteries, the site of blood pressure control [270]. Pagano’s group [501] reported

that infusion of Nox2ds-tat, a competitive inhibitor of the interaction of Nox2 with p47phox,

significantly decreased AngII-induced increase in ROS production and systolic blood

pressure, supporting the role of Nox2-derived oxidative stress in hypertension. A decreased

hypertensive response to AngII infusion in p47phox-deficient mice [502] and an increased

response in mice with SMC-specific overexpression of p22phox [503] were also indicative

of the role of Nox2 activation in hypertension, although these subunits also affect the

activity of other Nox homologs. Increased Nox2 activity also contributes to renovascular

hypertension by decreasing •NO bioavailability [504]. Zimmerman et al. [505] reported that

hypertensive response to chronic systemic infusion of AngII is correlated with a marked

increase in O2•− production in the subfornical organ of the brain, a region lying outside the

blood-brain barrier (BBB). Studies using adenoviral vectors expressing small interfering

RNA demonstrated that both Nox2 and Nox4 enzymes are required for the full vasopressor

effects of AngII in this region [506]. Nox4 in the kidney may also mediate hypertension or

hypertension-induced renal injury as it is upregulated in several animal models of
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hypertension [442]. BH4 supplementation decreased vascular ROS production,

increased •NO bioavailability, and attenuated DOCA-salt-induced hypertension, indicating

that eNOS uncoupling could result in hypertension [496]. Recent evidence indicates a cross

talk between Nox and mitochondrial sources of ROS, and administration of a mitochondria-

targeted antioxidant, mitoTEMPO, attenuated AngII and DOCA-salt-induced hypertension

in mice [7,507]. MitoTEMPO also decreased mitochondrial and total cellular O2•−, reduced

cellular NADPH oxidase activity, and restored bioavailability of •NO. Overexpression of

SOD2 attenuated AngII-induced hypertension and vascular oxidative stress, further

supporting the role of mitochondrial oxidative stress in hypertension [7]. Together, the

various experimental animal models of hypertension support a causal role for oxidative

stress in blood pressure regulation.

Cardiac hypertrophy and heart failure

Oxidative stress and redox signaling are important contributing factors for LVH, which

occurs initially as an adaptive response to environmental stress to augment pump function

and to reduce wall stress [508]. The heart undergoes pathologic cardiac hypertrophy in

response to a long-term increase in workload, most often as a consequence of hypertension

(pressure overload) or ischemic heart disease, resulting eventually in chronic heart failure

[30]. Many of the molecular mechanisms of cardiac hypertrophy are redox sensitive and the

transition from pathological hypertrophy to heart failure involves a decrease in contractility,

ventricular remodeling and dilatation, myocardial fibrosis, and myocyte apoptosis.

Low-amplitude cyclic stretch induces hypertrophy in isolated cardiomyocytes via increased

ROS production and activation of ERK1/2, whereas high amplitude causes apoptosis via

activation of JNK, indicating how mechanical strain contributes to cardiac hypertrophy and

heart failure [509]. Many stimuli of pathological cardiac hypertrophy act by phosphorylating

class II histone dea-cetylases (HDACs), master negative regulators of cardiac hypertrophy

[510] (Fig. 2). Phosphorylated class II HDACs dissociate from transcription factors such as

MEF-2, NFAT, and CAMTA2, which then promote hypertrophy, whereas dissociated

HDACs translocate from the nucleus to the cytoplasm. However, Sadoshima’s group [511]

has shown that thioredoxin 1-sensitive oxidative modification of class II HDACs is a potent

mechanism for their translocation from the nucleus and induction of hypertrophy.

Thioredoxin 1 forms a multiprotein complex with HDAC4 and DnaJb5, a heat shock

protein, in cardiomyocytes. Treatment of cardiomyocytes with ROS-generating G-protein-

coupled receptor agonists such as phenylephrine stimulates oxidation of cysteine residues in

DnaJb5 (Cys274, Cys276) and HDAC4 (Cys667, Cys 669), forming intramolecular disulfide

bonds that enable HDAC4 to translocate to cytoplasm, resulting in hypertrophy. Thioredoxin

regulates the nucleocytoplasmic shuttling of HDAC4, independent of its phos-phorylation

status, by reducing Cys667 and Cys669, which inhibits hypertrophy [511,512]. Further

supporting the role of ROS in hypertrophy, antioxidant treatment inhibited pressure

overload-induced LVH in mice [513] and prevented the transition from compensatory

hypertrophy to heart failure in guinea pigs [514]. Congruent with this, overexpression of

antioxidant enzymes GPx and heme oxygenase-1 protected against pathologic left-

ventricular remodeling and dysfunction in mice [515,516]. Furthermore, myocardial
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dysfunction and the severity of heart failure in patients are correlated with increased

oxidative stress [30].

Cardiac hypertrophy induced in response to chronic infusion of a subpressor dose of AngII

was inhibited in Nox2y/− mice [268]. Inhibition of Nox2 enzyme activity by cardiomyocyte-

specific deletion of Rac1 also decreased AngII-induced myocardial oxidative stress,

activation of the redox-sensitive Ask1-NF-κB signaling pathway, and cardiac hypertrophy,

further supporting the role of this enzyme in LVH [517] (Fig. 2). Nox2 enzyme activity and

expression are increased in pressure overload-induced cardiac hypertrophy [518–520] as

well as in the myocardium of failing human hearts [5,521,522]. However, Nox2 is not

essential for pressure overload-induced LVH although Nox2y/− mice had less cardiac

interstitial fibrosis and less contractile dysfunction compared with wild-type mice when

subjected to chronic pressure overload [523]. Cardiac hypertrophy, cardiomyocyte

apoptosis, and interstitial fibrosis were substantially reduced in p47phox−/− mice after

myocardial infarction, indicating that Nox2 activation is involved in cardiac remodeling

after myocardial infarction [524].

Nox4 expression is enhanced in cardiomyocytes treated with hypertrophic stimulants such as

AngII and phenylephrine and in response to pressure overload [525,526]. Mice with cardiac-

specific deletion of Nox4 had less mitochondrial O2
•−, interstitial fibrosis, and

cardiomyocyte apoptosis along with attenuated cardiac hypertrophy and better cardiac

function in response to cardiac pressure overload compared with the wild type [527].

Correspondingly, cardiac-specific overexpression of Nox4 exacerbated cardiac dysfunction,

fibrosis, and apoptosis in response to pressure overload, but did not cause cardiac

hypertrophy. Also, Nox4 overexpression in vitro in cardiomyocytes induced apoptotic cell

death but not hypertrophy [525], which suggests that the primary effect of an increase in

Nox4 expression in a failing heart is cardiomyocyte apoptosis rather than hypertrophy.

However, Shah’s group [526] reported exaggerated contractile dysfunction, hypertrophy,

and cardiac dilatation during exposure to chronic pressure overload in global Nox4-

knockout mice, whereas Nox4-transgenic mice with cardiomyocyte-specific overexpression

were protected. The protective effect of Nox4 overexpression was attributed to preservation

of myocardial capillary density during pressure overload. This view is supported by the

recent findings of Brandes and colleagues [528] that ischemia-induced angiogenesis was

impaired in Nox4−/− mice in a femoral artery ligation model. The reason for the discrepancy

in the reported Nox4 function is unclear but may be related to the total as well as cell-type-

specific concentration of H2O2 and the differences in vasoactive effectors produced in

various model systems.

It has been suggested that ROS generation by XO contributes to impaired myocardial energy

metabolism in heart failure [290,291]. Evidence for this was obtained using transgenic mice

containing a troponin I truncation, a model of progressive dilated cardiomyo-pathy in which

chronic XO inhibition with allopurinol delayed heart failure progression by preventing

myofibrillar protein oxidation and improving cardiac muscle force generation [529]. The

improvement in contractile function with the suppression of XO activity was corroborated in

mice with coronary artery ligation, using echocardiography and MRI [530,531]. In a rather

small study of nine patients with idiopathic dilated cardiomyopathy, allopur-inol
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significantly improved myocardial efficiency [291]. However, in a prospective OPT-CHF

study (the efficacy and safety study of oxypurinol in patients with symptomatic heart

failure), oxypur-inol, the active metabolite of allopurinol, failed to show improvement in the

primary composite end point of heart failure clinical status and mortality [532].

Ischemia–reperfusion injury

The levels of ROS generation during ischemia are low, but cardiac ischemia–reperfusion

injury occurs upon the restoration of blood flow to the ischemic myocardium, resulting from

a large burst of ROS generation [191]. ROS generated during early reperfu-sion cause

extensive damage to cardiomyocytes, resulting in the loss of cell viability. It was shown that

heterozygous deficiency of GPx1 impaired myocardial recovery after ischemia–reperfusion

injury [533]. Global knockdown of GPx1 in mice resulted in impaired cardiac recovery after

ischemia–reperfusion injury [534]. GPx-1−/− mice had increased mitochondrial ROS

production, increased oxidative mitochondrial DNA damage, and decreased expression of

mitochondrial proteins including complex I, resulting in a decrease in NADH and ATP

generation [534]. These results suggest that restoring homeostatic redox signaling and

cardiac energy bioavailability is important for recovery from ischemia– reperfusion injury

[535]. Thioredoxin 1 (Trx1; cytosolic isoform) and Trx2 (mitochondrial isoform) are key

regulators of the cellular redox state, whose function is regulated by thioredoxin-interacting

protein, an endogenous inhibitor. Yoshioka et al. [536] recently demonstrated improved left-

ventricular function after ischemia–reperfusion injury in global as well as cardiomyocyte-

specific thioredoxin-interacting protein-knockout mice compared with the wild type (Fig. 3).

Protection against injury in these knockout mice was associated with a significant increase

in Trx2 activity and decrease in myocardial ROS production. Furthermore, thioredoxin-

interacting protein deficiency repressed mitochondrial respiration and enhanced anaerobic

glycolysis, increasing cellular ATP levels.

HIF confers protection during and/or after ischemia via activation of downstream effector

genes that increase glycolytic capacity, antioxidant defense, angiogenesis, and cell survival

signaling [199] (Fig. 1). Cardiomyocyte-specific deletion of HIF1α in mice decreased

contractility, vascularization, and high-energy phosphate content via altered gene

expression, supporting a central role for HIF1α in coordinating energy availability and

utilization in the heart [537]. As a corollary to this, cardiomyocyte-specific overexpression

of HIF1α in mice attenuated infarct size and improved cardiac function 4 weeks after

myocardial infarction, in association with an increase in capillary density as well as vascular

endothelial growth factor and iNOS expression in the peri-infarct regions [538]. Similarly,

activation of HIF1a by silencing HIF1a–prolyl 4-hydroxylase in the heart using small

interfering RNA significantly increased iNOS mRNA expression and decreased infarct size

and cardiac dysfunction after ischemia-reperfusion [539]. Furthermore, this protection was

lost in iNOS−/− mice, indicating the critical role played by iNOS-dependent pathways

against reperfusion injury. Highlighting the importance of •NO in protection against

ischemia-reperfusion injury, Sun et al. [540] showed that ischemic preconditioning of rat

hearts causes nitrosylation of proteins involved in Ca2+ handling and energetics (Fig. 4). For

example, ischemic preconditioning causes S-nitrosylation and a decrease in the activity of

the mitochondrial F1-ATPase, reducing the rate of decline in ATP levels. Further supporting
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the role of S-nitrosylation in protection against ischemia, perfusion of hearts with S-

nitrosoglutathione improved left-ventricular function.

ROS generation and redox signaling during the early preconditioning period may be

involved in the eventual cardioprotective effect afforded by some ischemic preconditioning

stimuli [189,199]. Diazoxide-induced cardioprotection against ischemia-reperfusion injury is

mediated by ROS-induced activation of mitochondrial ATP-sensitive potassium channel,

and antioxidants block the protection afforded by diazoxide as well as ischemic

preconditioning [190,541]. The ROS generated during early preconditioning can be from

mitochondria (slightly swollen with increased respiration) [542] or from Nox2 [543] and

may act via stimulation of PKC.

Cerebral ischemia resulting from the occlusion of vessels in the brain tissue in the vast

majority of strokes causes brain damage. Recanalization of the occluded vessels and

restoration of the blood flow is the most effective treatment for the stroke. As in the heart,

reperfusion results in increased ROS generation and oxidative stress, which significantly

limit the benefits of the stroke therapies [544,545]. Intrinsic high metabolic activity, very

high concentrations of the neurotransmitter-excitotoxin glutamate, and limited antioxidant

defense mechanisms make the brain very susceptible to oxidative damage [546–548].

During reperfusion in the brain microvasculature, ROS break down the BBB, consisting of

endothelial cells, pericytes, the surrounding basement membrane, and attached astrocyte

endfeet, which can result in cerebral edema and/or brain hemorrhage, neurovascular injury,

and neuronal death [544,549]. More recently, it was posited that the cell-cell and cell-matrix

interaction between the BBB and neuronal and glial cells constituting the “neurovascular

unit” integrates the brain function in response to various insults, including ischemia-

reperfusion injury [548]. For example, sublethal levels of oxidative stress downregulate the

production of cerebral endothelium-produced brain-derived neurotrophic factor, indicating

the importance of cerebral endothelium as a critical source of homeostatic support for

neurons and cell-cell interaction in coordinating protection against ischemia-reperfusion

injury.

Mitochondria-derived ROS generation has hitherto been considered the major source of

oxidative stress in the ischemia-reperfusion-induced BBB opening. Mitochondria are

abundant in the brain [550] and dephosphorylation of oxidative phosphorylation complexes

induced by ischemia causes hyperactive electron transport and hyperpolarization of

mitochondrial membrane potential upon reperfusion, resulting in excess ROS production

[551]. However, recent data suggest that Nox2 activity plays a dominant role in O2
•−

generation during N-methyl-D-aspartate receptor stimulation in ischemia in neurovascular

cells and is the molecular mechanism underlying excitotoxicity-induced neuronal death

[552,553]. Further affirming the important role of Nox2 in excitotoxicity, ROS generation

and cell death were blocked in neurons lacking p47phox or with Nox inhibition [553].

Interestingly, Nox2 expression and activity observed in the brain after ischemia were

markedly decreased in SOD1-transgenic mice, whereas they were significantly increased in

SOD1−/− mice, indicating that Nox expression is redox sensitive [554].
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Microglia, the resident macrophages of the brain that express Nox1 and Nox2, are activated

very early in ischemia and their activation precedes macrophage infiltration [555,556].

However, Nox1 does not have any neuroprotective effect in severe cerebral ischemia

[557,558]. Microglial Nox-derived O2
•− enhanced astrocyte and cerebral endothelial cell

death in a cell culture model of ischemia, whereas inhibition of microglia activation in mice

markedly reduced BBB dysfunction and infarct volume in experimental stroke [559].

Additionally, activated astrocytes can produce large amounts of ROS and RNS via the

stimulation of NADPH oxidase and iNOS [560,561], although this has not been shown

under ischemia–reperfusion conditions. Infiltration of highly active Nox2-dependent

NADPH oxidase-containing inflammatory cells such as neutrophils occurs for 3 days

followed by that of blood-derived monocytes/macrophages, which peaks between 3 and 7

days after brain ischemia–reperfusion [555,562].

Nox4 protein is also expressed in neurons and cerebrovascular endothelial cells [558,563],

with very high expression in basilar compared with systemic arteries [564]. Nox4 expression

in mouse neurons is increased within 24 h after ischemia, peaks between days 7 and 15, and

declines but remains high at day 30 [563]. Nox4 expression is also induced in the neurons

and cerebrovascular endothelial cells of stroke patients [558]. Interestingly, Nox4 deletion

had an overwhelmingly protective effect against cerebral infarction, BBB leakage, and

neuronal apoptosis in mice subjected to both transient and permanent cerebral ischemia

[558]. More recently, Hara and colleagues [565] have shown that Nox4 associates with Toll-

like receptor 4 (TLR4; an essential component of innate immunity) in the brain tissue of

mice and humans after ischemia–reperfusion. Deletion or pharmacological inhibition of

TLR4 reduced Nox4 expression and suppressed ROS/RNS generation and neuronal

apoptosis, indicating that activation of the TLR4–Nox4 signaling pathway is a potential

pathophysiological mechanism in ischemic injury.

Conclusions and future perspectives

In conclusion, evidence from experimental and animal studies supports a decisive role for

redox signaling in cardiovascular home-ostasis and disease. As mentioned earlier,

translation of this knowledge into human therapy for CVD has not been particularly

successful as demonstrated by the disappointing data from large antioxidant clinical trials

[20,566]. Evolving consensus suggests that targeting the source of ROS using specific

inhibitors might be more effective in treating CVD than the use of antioxidants [567]. The

NADPH oxidases are perhaps the best example of this strategy, as direct inhibitors of

various Nox catalytic subunits are in development [568]. The complexity of the regulation

of these enzymes may also lend itself to therapeutic manipulation in a cell- and tissue-

specific manner, with fewer off-target effects. Other potential means to modulate redox

signaling and treat CVD include targeting uncoupled NOS and mitochondrial ROS and

augmenting endogenous antiox-idant gene regulators such as Nrf2 and antioxidant systems

such as thioredoxin and peroxiredoxins [569]. Because of the intricate nature of redox

biology and the need to target ROS in specific organ systems, advances in the clinical

management of CVD may depend on progress in other fields such as gene therapy, systems

biology, and nanotechnology. A good example in this regard is the recent successful and

safe completion of SERCA2 (a protein inactivated by high levels of ROS) gene therapy for
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the treatment of heart failure [570]. Advances in nanotechnology may help in the detection

of activated/dysfunctional endothelium by imaging the inflammatory markers [571–573].

Furthermore, nanotechnology-based drug delivery mechanisms targeted to specific cell

types/organs (cardiomyo-cytes/heart) and organelles (mitochondria) may help transform the

treatment of CVD and other diseases of oxidative stress.
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Abbreviations

AngII angiotensin II

AP-1 activator protein-1

apoA-1 apolipoprotein A-1

Ask1 apoptosis signaling kinase-1

CAD coronary artery disease

CAMTA calmodulin-binding transcription activator

CHD coronary heart disease

CVD cardiovascular disease

CHF congestive heart failure

EDHF endothelium-derived hyperpolarizing factor

EGF epidermal growth factor

eNOS endothelial nitric oxide synthase

ETC electron transport chain

iNOS inducible nitric oxide synthase

GPx glutathione peroxidase

HDAC histone deacetylase

HDL high-density lipoprotein

HIF hypoxia-inducible factor

JNK c-Jun N-terminal kinase

Keap1 Kelch-like ECH-associated protein 1

L-NAME N G-nitro-l-arginine methyl ester

LDL low-density lipoprotein

LOX lipoxygenase

LVH left-ventricular hypertrophy

MPO myeloperoxidase
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NF-κB nuclear factor-κB

Nox NADPH oxidase

NOS nitric oxide synthase

nNOS neuronal nitric oxide synthase

Nrf2 nuclear factor E2-related factor 2

PDGF platelet-derived growth factor

PKC protein kinase C

PKG protein kinase G

PON paraoxonase

PTP protein tyrosine phosphatase

ROS reactive oxygen species

SOD superoxide dismutase

SHP2 Src homology phosphatase 2

VCAM vascular cell adhesion molecule

VSMC vascular smooth muscle cell

XO xanthine oxidase
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Fig. 1.
HIF transactivation confers cardiac protection during ischemia. Abbreviations used: HIF,

hypoxia-inducible factor; VEGF, vascular endothelial growth factor; IGF-2, insulin-like

growth factor-2; HO-1, heme oxygenase-1; iNOS, inducible nitric oxide synthase; •NO,

nitric oxide.
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Fig. 2.
Redox signaling pathways regulate cardiac hypertrophy. Nox2 NADPH oxidase stimulation

in response to G-protein-coupled receptor agonists or mechanical stretch activates the Ask1–

NF-κB pathway, inducing cardiac hypertrophy. HDAC4 suppresses the activity of

prohypertrophic transcription factors. Phosphorylation or oxidation of HDAC4 during

oxidative stress conditions results in its export to the cytosol, leading to hypertrophy [511].

Abbreviations used: AngII, angiotensin II; Ask1, apoptosis signaling kinase 1; CaMKII,

calcium/calmodulin-dependent kinase II; CAMTA2, calmodulin-binding transcription

activator 2; CRM1, chromosomal region maintenance-1; Dnajb5, DnaJ homolog subfamily

B member 5; GPCR, G-protein-coupled receptor; GRK, G-protein-coupled receptor kinase;

HDAC, histone deacetylase; HDAC-P, phosphorylated HDAC; Imp, importin α; JNK, c-Jun

N-terminal kinase; MEF-2, myocyte enhancer factor-2; NFAT, nuclear factor of activated T

cells; NF-κB, nuclear factor-κB; ox, oxidized; red, reduced; TBP-2, thioredoxin binding

protein-2; Trx1, thioredoxin 1.
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Fig. 3.
Thioredoxin-interacting protein (Txnip) regulates cardiac ischemia–reperfusion injury. In

wild-type mice, Txnip translocates to mitochondria during myocardial ischemia–reperfusion

and induces mitochondrial dysfunction by inhibiting thioredoxin 2 (Trx2) activity and

increasing ROS levels. Txnip deficiency protects against cardiac ischemia–reperfusion

injury by allowing efficient scavenging of mitochondrial ROS by Trx2 and maintaining

energy homeostasis through enhanced anaerobic metabolism [536].
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Fig. 4.
Preconditioning protects against myocardial ischemia–reperfusion injury by the S-

nitrosylation of proteins regulating intracellular Ca2+ levels and mitochondrial energetics

[adapted from 540]. Abbreviation used: SERCA, sarcoplasmic/endoplasmic reticulum Ca2+-

ATPase.
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Table 1

Cardiovascular cell-specific expression of Nox isoforms.

Cell type Nox isoform Tissue Ref.

VSMCs Nox1 Mouse, rat aorta [261,254,260]

VSMCs Nox1 Human coronary artery [10]

VSMCs Nox2 Human resistance artery [270]

VSMCs Nox4 Mouse, rat aorta [271,272]

VSMCs Nox4 Human aorta [273]

VSMCs Nox4 Human coronary artery [10]

VSMCs Nox5 Human aorta [277]

VSMCs Duox1 Human aorta [280]

Endothelial cells Nox1 Human coronary artery [10]

Endothelial cells Nox1 Human umbilical vein [262]

Endothelial cells Nox2 Mouse, rat aorta [263,264]

Endothelial cells Nox2 Human coronary artery [10]

Endothelial cells Nox2 Human umbilical vein [265,266]

Endothelial cells Nox4 Rat aorta [264]

Endothelial cells Nox4 Human coronary artery [10]

Endothelial cells Nox4 Human heart [10]

Fibroblasts Nox1 Human heart [10]

Fibroblasts Nox2 Human coronary artery [10]

Fibroblasts Nox2 Human heart [10]

Cardiomyocytes Nox2 Mouse, rat heart [265,269]

Cardiomyocytes Nox4 Mouse heart [275]
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Table 2

Experimental mouse models support the role of oxidative stress in atherosclerosis.

Effector Genetic model/pharmacologic agent Phenotype Ref.

p66Shc ApoE−/−/p66Shc−/− Decreased oxidative stress, lipid
peroxidation and atherosclerosis

[444]

PKCβ ApoE−/−/PKCβ−/− Decreased MMP expression and
activity; decreased atherosclerosis

[445]

JNK2 ApoE−/−/JNK2−/− Decreased foam cell formation and
atherosclerosis

[446]

p47phox (Nox1/2 NADPH
oxidase activity)

ApoE−/−/p47phox−/− Decreased vascular ROS levels and
atherosclerosis

[3,464]

Nox1/2/4 expression/activity AG490 Decreased atherosclerosis in apoE−/−

mice
[466]

Nox2 ApoE−/−/Nox2y/− Decreased vascular ROS levels;
increased NO bioavailability and
decreased atherosclerosis

[263]

Nox1 ApoE−/−/Nox1y/− Decreased vascular ROS levels and
atherosclerosis

[468]

Nox1/4 GKT136901 Decreased vascular ROS levels and
atherosclerosis

[134]

Catalase; SOD1 and catalase ApoE−/−/hCatTg0/+; apoE−/−/hSOD1Tg0/ +/hCatTg0/+ Decreased lipid peroxidation and
atherosclerosis

[471]

SOD2 ApoE−/−/SOD2+/− Increased mitochondrial ROS levels
and mitochondrial DNA damage;
increasedatherosclerosis

[4]

GPx ApoE−/−/GPx−/− Increased vascular ROS levels and
atherosclerosis

[476]

eNOS ApoE−/−/eNOS−/− Accelerated atherosclerosis, aortic
aneurysm, and ischemic heart disease

[314]

PON1 PON1−/−; apoE−/−/PON1−/− Increased atherosclerosis [483,484]

PON2 PON2-deficient apoE−/− Increased mitochondrial oxidative
stress

[486]

PON3 hPON3Tg0/+; apoE−/−/hPON3Tg0/+ Decreased atherosclerosis [487]
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